metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:234000
- loss:MSELoss
base_model: FacebookAI/xlm-roberta-base
widget:
- source_sentence: the night before the night before christmas movie
sentences:
- hu
- ' តើការប្រកួតបាល់បោះលីកធំជាងគេដែលវែងជាងគេបំផុតក្នុងប្រវត្តិសាស្ត្រមានអ្វីខ្លះ'
- Másnapos Karácsony
- source_sentence: when did star wars a new hope come out
sentences:
- Koska alexandrian kirjasto tuhoutui tulipalossa
- bilakah star wars a new hope keluar
- ms
- source_sentence: what is the relative location of new york city
sentences:
- ما هو الموقع النسبي لمدينة نيويورك
- ar
- dov'è stato girato il film i cannoni di Navarone
- source_sentence: how many miles from albuquerque new mexico to amarillo texas
sentences:
- сколько миль от альбукерке нью мексико до амарилло техас
- qui a chanté we all live in a yellow submarine
- ru
- source_sentence: where does food wars anime end in the manga
sentences:
- food wars 动漫是在漫画哪里结束的
- 《食戟之靈》漫畫幾時完
- zh_hk
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- negative_mse
model-index:
- name: SentenceTransformer based on FacebookAI/xlm-roberta-base
results:
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to ar
type: MSE-val-en-to-ar
metrics:
- type: negative_mse
value: -19.935108721256256
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to da
type: MSE-val-en-to-da
metrics:
- type: negative_mse
value: -16.227059066295624
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to de
type: MSE-val-en-to-de
metrics:
- type: negative_mse
value: -17.03149825334549
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to en
type: MSE-val-en-to-en
metrics:
- type: negative_mse
value: -14.746585488319397
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to es
type: MSE-val-en-to-es
metrics:
- type: negative_mse
value: -16.7389914393425
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to fi
type: MSE-val-en-to-fi
metrics:
- type: negative_mse
value: -17.699478566646576
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to fr
type: MSE-val-en-to-fr
metrics:
- type: negative_mse
value: -16.85505211353302
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to he
type: MSE-val-en-to-he
metrics:
- type: negative_mse
value: -19.114328920841217
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to hu
type: MSE-val-en-to-hu
metrics:
- type: negative_mse
value: -17.86249130964279
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to it
type: MSE-val-en-to-it
metrics:
- type: negative_mse
value: -16.931141912937164
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to ja
type: MSE-val-en-to-ja
metrics:
- type: negative_mse
value: -18.774642050266266
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to ko
type: MSE-val-en-to-ko
metrics:
- type: negative_mse
value: -19.68335211277008
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to km
type: MSE-val-en-to-km
metrics:
- type: negative_mse
value: -19.339339435100555
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to ms
type: MSE-val-en-to-ms
metrics:
- type: negative_mse
value: -16.49850606918335
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to nl
type: MSE-val-en-to-nl
metrics:
- type: negative_mse
value: -15.982428193092346
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to no
type: MSE-val-en-to-no
metrics:
- type: negative_mse
value: -16.261471807956696
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to pl
type: MSE-val-en-to-pl
metrics:
- type: negative_mse
value: -17.510776221752167
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to pt
type: MSE-val-en-to-pt
metrics:
- type: negative_mse
value: -16.528253257274628
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to ru
type: MSE-val-en-to-ru
metrics:
- type: negative_mse
value: -17.358270287513733
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to sv
type: MSE-val-en-to-sv
metrics:
- type: negative_mse
value: -16.31281077861786
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to th
type: MSE-val-en-to-th
metrics:
- type: negative_mse
value: -17.586874961853027
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to tr
type: MSE-val-en-to-tr
metrics:
- type: negative_mse
value: -17.390474677085876
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to vi
type: MSE-val-en-to-vi
metrics:
- type: negative_mse
value: -17.174969613552094
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to zh cn
type: MSE-val-en-to-zh_cn
metrics:
- type: negative_mse
value: -18.12549978494644
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to zh hk
type: MSE-val-en-to-zh_hk
metrics:
- type: negative_mse
value: -18.189936876296997
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to zh tw
type: MSE-val-en-to-zh_tw
metrics:
- type: negative_mse
value: -18.67867261171341
name: Negative Mse
SentenceTransformer based on FacebookAI/xlm-roberta-base
This is a sentence-transformers model finetuned from FacebookAI/xlm-roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: FacebookAI/xlm-roberta-base
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("luanafelbarros/xlm-roberta-base-multilingual-mkqa")
# Run inference
sentences = [
'where does food wars anime end in the manga',
'《食戟之靈》漫畫幾時完',
'zh_hk',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Knowledge Distillation
- Datasets:
MSE-val-en-to-ar
,MSE-val-en-to-da
,MSE-val-en-to-de
,MSE-val-en-to-en
,MSE-val-en-to-es
,MSE-val-en-to-fi
,MSE-val-en-to-fr
,MSE-val-en-to-he
,MSE-val-en-to-hu
,MSE-val-en-to-it
,MSE-val-en-to-ja
,MSE-val-en-to-ko
,MSE-val-en-to-km
,MSE-val-en-to-ms
,MSE-val-en-to-nl
,MSE-val-en-to-no
,MSE-val-en-to-pl
,MSE-val-en-to-pt
,MSE-val-en-to-ru
,MSE-val-en-to-sv
,MSE-val-en-to-th
,MSE-val-en-to-tr
,MSE-val-en-to-vi
,MSE-val-en-to-zh_cn
,MSE-val-en-to-zh_hk
andMSE-val-en-to-zh_tw
- Evaluated with
MSEEvaluator
Metric | MSE-val-en-to-ar | MSE-val-en-to-da | MSE-val-en-to-de | MSE-val-en-to-en | MSE-val-en-to-es | MSE-val-en-to-fi | MSE-val-en-to-fr | MSE-val-en-to-he | MSE-val-en-to-hu | MSE-val-en-to-it | MSE-val-en-to-ja | MSE-val-en-to-ko | MSE-val-en-to-km | MSE-val-en-to-ms | MSE-val-en-to-nl | MSE-val-en-to-no | MSE-val-en-to-pl | MSE-val-en-to-pt | MSE-val-en-to-ru | MSE-val-en-to-sv | MSE-val-en-to-th | MSE-val-en-to-tr | MSE-val-en-to-vi | MSE-val-en-to-zh_cn | MSE-val-en-to-zh_hk | MSE-val-en-to-zh_tw |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
negative_mse | -19.9351 | -16.2271 | -17.0315 | -14.7466 | -16.739 | -17.6995 | -16.8551 | -19.1143 | -17.8625 | -16.9311 | -18.7746 | -19.6834 | -19.3393 | -16.4985 | -15.9824 | -16.2615 | -17.5108 | -16.5283 | -17.3583 | -16.3128 | -17.5869 | -17.3905 | -17.175 | -18.1255 | -18.1899 | -18.6787 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 234,000 training samples
- Columns:
english
,non-english
,target
, andlabel
- Approximate statistics based on the first 1000 samples:
english non-english target label type string string string list details - min: 10 tokens
- mean: 13.21 tokens
- max: 19 tokens
- min: 7 tokens
- mean: 13.87 tokens
- max: 31 tokens
- min: 3 tokens
- mean: 3.38 tokens
- max: 6 tokens
- size: 768 elements
- Samples:
english non-english target label what are all the wizard of oz movies
the wizard of oz ما هي كل افلام
ar
[0.5303382277488708, -0.31762194633483887, -0.2945275902748108, -0.6602655649185181, -1.4617066383361816, ...]
what are all the wizard of oz movies
hvad er alle troldmanden fra oz filmene
da
[0.5303382277488708, -0.31762194633483887, -0.2945275902748108, -0.6602655649185181, -1.4617066383361816, ...]
what are all the wizard of oz movies
Wie heißen alle Der Zauberer von Oz Filme
de
[0.5303382277488708, -0.31762194633483887, -0.2945275902748108, -0.6602655649185181, -1.4617066383361816, ...]
- Loss:
MSELoss
Evaluation Dataset
Unnamed Dataset
- Size: 13,000 evaluation samples
- Columns:
english
,non-english
,target
, andlabel
- Approximate statistics based on the first 1000 samples:
english non-english target label type string string string list details - min: 10 tokens
- mean: 13.05 tokens
- max: 22 tokens
- min: 5 tokens
- mean: 13.79 tokens
- max: 34 tokens
- min: 3 tokens
- mean: 3.38 tokens
- max: 6 tokens
- size: 768 elements
- Samples:
english non-english target label a change to the constitution must be approved by
يجب الموافقة على تغيير الدستور
ar
[1.0918692350387573, 0.8024187684059143, 0.23035858571529388, 0.16300565004348755, -0.6033854484558105, ...]
a change to the constitution must be approved by
en ændring af forfatningen skal godkendes af
da
[1.0918692350387573, 0.8024187684059143, 0.23035858571529388, 0.16300565004348755, -0.6033854484558105, ...]
a change to the constitution must be approved by
Eine Änderung der Verfassung muss gebilligt werden durch
de
[1.0918692350387573, 0.8024187684059143, 0.23035858571529388, 0.16300565004348755, -0.6033854484558105, ...]
- Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 2e-05warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | MSE-val-en-to-ar_negative_mse | MSE-val-en-to-da_negative_mse | MSE-val-en-to-de_negative_mse | MSE-val-en-to-en_negative_mse | MSE-val-en-to-es_negative_mse | MSE-val-en-to-fi_negative_mse | MSE-val-en-to-fr_negative_mse | MSE-val-en-to-he_negative_mse | MSE-val-en-to-hu_negative_mse | MSE-val-en-to-it_negative_mse | MSE-val-en-to-ja_negative_mse | MSE-val-en-to-ko_negative_mse | MSE-val-en-to-km_negative_mse | MSE-val-en-to-ms_negative_mse | MSE-val-en-to-nl_negative_mse | MSE-val-en-to-no_negative_mse | MSE-val-en-to-pl_negative_mse | MSE-val-en-to-pt_negative_mse | MSE-val-en-to-ru_negative_mse | MSE-val-en-to-sv_negative_mse | MSE-val-en-to-th_negative_mse | MSE-val-en-to-tr_negative_mse | MSE-val-en-to-vi_negative_mse | MSE-val-en-to-zh_cn_negative_mse | MSE-val-en-to-zh_hk_negative_mse | MSE-val-en-to-zh_tw_negative_mse |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0273 | 100 | 0.7471 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0547 | 200 | 0.5344 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0820 | 300 | 0.4011 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1094 | 400 | 0.3686 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1367 | 500 | 0.3558 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1641 | 600 | 0.3527 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1914 | 700 | 0.3479 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2188 | 800 | 0.3373 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2461 | 900 | 0.3315 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2734 | 1000 | 0.3243 | 0.3143 | -31.0036 | -30.4995 | -30.5974 | -30.3236 | -30.5190 | -30.6680 | -30.5902 | -30.8805 | -30.7873 | -30.6191 | -30.7149 | -30.7932 | -30.8955 | -30.5254 | -30.5554 | -30.5243 | -30.6522 | -30.5353 | -30.5800 | -30.5240 | -30.7348 | -30.7127 | -30.6429 | -30.5608 | -30.5626 | -30.5837 |
0.3008 | 1100 | 0.3175 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3281 | 1200 | 0.3126 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3555 | 1300 | 0.3082 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3828 | 1400 | 0.3049 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4102 | 1500 | 0.3019 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4375 | 1600 | 0.2988 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4649 | 1700 | 0.2979 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4922 | 1800 | 0.2926 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5196 | 1900 | 0.2885 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5469 | 2000 | 0.2879 | 0.2787 | -26.4435 | -25.3475 | -25.5656 | -24.8280 | -25.4096 | -25.8103 | -25.4399 | -26.1209 | -25.8292 | -25.5216 | -26.0866 | -26.4725 | -26.2586 | -25.5986 | -25.3495 | -25.2907 | -25.6509 | -25.3489 | -25.4795 | -25.3660 | -25.7628 | -25.7572 | -25.6763 | -25.7273 | -25.7893 | -25.8524 |
0.5742 | 2100 | 0.2843 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6016 | 2200 | 0.2821 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6289 | 2300 | 0.2795 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6563 | 2400 | 0.2808 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6836 | 2500 | 0.2771 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7110 | 2600 | 0.2745 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7383 | 2700 | 0.272 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7657 | 2800 | 0.2711 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7930 | 2900 | 0.2685 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8203 | 3000 | 0.267 | 0.2638 | -24.2447 | -22.3985 | -22.7542 | -21.5879 | -22.5929 | -23.2891 | -22.6798 | -23.7047 | -23.1739 | -22.7708 | -23.5962 | -24.2250 | -23.9269 | -22.8039 | -22.2681 | -22.3432 | -22.9390 | -22.5717 | -22.8201 | -22.4143 | -23.1236 | -23.1100 | -22.9658 | -23.0786 | -23.2390 | -23.3243 |
0.8477 | 3100 | 0.2718 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8750 | 3200 | 0.2674 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9024 | 3300 | 0.2662 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9297 | 3400 | 0.2631 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9571 | 3500 | 0.26 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9844 | 3600 | 0.2586 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0118 | 3700 | 0.2575 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0391 | 3800 | 0.2549 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0664 | 3900 | 0.2529 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0938 | 4000 | 0.2511 | 0.2469 | -22.9347 | -20.4196 | -20.9011 | -19.3762 | -20.7242 | -21.5322 | -20.7711 | -22.3208 | -21.5176 | -20.9047 | -22.1008 | -22.8701 | -22.4827 | -20.7383 | -20.2571 | -20.3842 | -21.1960 | -20.6791 | -21.0474 | -20.4460 | -21.3999 | -21.3937 | -21.1382 | -21.5265 | -21.6918 | -21.8791 |
1.1211 | 4100 | 0.2502 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1485 | 4200 | 0.2491 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1758 | 4300 | 0.248 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2032 | 4400 | 0.2463 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2305 | 4500 | 0.2445 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2579 | 4600 | 0.2432 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2852 | 4700 | 0.2419 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3126 | 4800 | 0.2405 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3399 | 4900 | 0.2404 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3672 | 5000 | 0.2394 | 0.2354 | -21.7963 | -18.8622 | -19.4636 | -17.6703 | -19.2473 | -20.1437 | -19.3378 | -21.1200 | -20.1560 | -19.4587 | -20.9473 | -21.6343 | -21.2979 | -19.1964 | -18.6653 | -18.8517 | -19.8565 | -19.1500 | -19.6760 | -18.9243 | -19.9718 | -19.9191 | -19.6695 | -20.2707 | -20.4090 | -20.6846 |
1.3946 | 5100 | 0.2375 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4219 | 5200 | 0.2374 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4493 | 5300 | 0.236 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4766 | 5400 | 0.2335 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5040 | 5500 | 0.2346 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5313 | 5600 | 0.2335 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5587 | 5700 | 0.232 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5860 | 5800 | 0.2314 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6133 | 5900 | 0.2304 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6407 | 6000 | 0.2303 | 0.2289 | -21.1967 | -17.9192 | -18.5833 | -16.6276 | -18.3510 | -19.2977 | -18.4551 | -20.3960 | -19.3202 | -18.5573 | -20.1420 | -20.9358 | -20.6084 | -18.2396 | -17.7261 | -17.9322 | -19.0167 | -18.2305 | -18.8471 | -17.9794 | -19.1440 | -19.0105 | -18.7845 | -19.4778 | -19.6095 | -19.9643 |
1.6680 | 6100 | 0.2294 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6954 | 6200 | 0.229 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7227 | 6300 | 0.2275 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7501 | 6400 | 0.2285 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7774 | 6500 | 0.2279 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8048 | 6600 | 0.2275 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8321 | 6700 | 0.2256 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8594 | 6800 | 0.2259 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8868 | 6900 | 0.2237 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9141 | 7000 | 0.2232 | 0.2242 | -20.6888 | -17.2295 | -17.9547 | -15.8517 | -17.7267 | -18.6854 | -17.8191 | -19.8853 | -18.7432 | -17.9054 | -19.5866 | -20.4321 | -20.1381 | -17.5215 | -16.9982 | -17.2683 | -18.4340 | -17.5295 | -18.2454 | -17.3006 | -18.5072 | -18.3554 | -18.1438 | -18.9634 | -19.0843 | -19.4826 |
1.9415 | 7100 | 0.2231 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9688 | 7200 | 0.2225 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9962 | 7300 | 0.2235 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.0235 | 7400 | 0.2224 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.0509 | 7500 | 0.2206 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.0782 | 7600 | 0.2205 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.1056 | 7700 | 0.2196 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.1329 | 7800 | 0.22 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.1602 | 7900 | 0.2188 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.1876 | 8000 | 0.2184 | 0.2209 | -20.3380 | -16.7285 | -17.5078 | -15.3142 | -17.2366 | -18.1903 | -17.3419 | -19.5057 | -18.2970 | -17.4283 | -19.1880 | -20.0709 | -19.7478 | -17.0291 | -16.5125 | -16.7629 | -17.9586 | -17.0487 | -17.7907 | -16.8237 | -18.0585 | -17.8714 | -17.6527 | -18.5499 | -18.6504 | -19.0688 |
2.2149 | 8100 | 0.2189 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.2423 | 8200 | 0.2178 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.2696 | 8300 | 0.2185 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.2970 | 8400 | 0.2175 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.3243 | 8500 | 0.2183 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.3517 | 8600 | 0.2176 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.3790 | 8700 | 0.2169 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.4063 | 8800 | 0.2172 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.4337 | 8900 | 0.2153 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.4610 | 9000 | 0.2162 | 0.2187 | -20.1028 | -16.4147 | -17.2107 | -14.9595 | -16.9406 | -17.9101 | -17.0441 | -19.2680 | -18.0594 | -17.1276 | -18.9403 | -19.8407 | -19.5169 | -16.6976 | -16.1859 | -16.4554 | -17.6828 | -16.7360 | -17.5378 | -16.5167 | -17.7710 | -17.5853 | -17.3717 | -18.3032 | -18.3627 | -18.8466 |
2.4884 | 9100 | 0.2159 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.5157 | 9200 | 0.2161 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.5431 | 9300 | 0.2148 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.5704 | 9400 | 0.2148 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.5978 | 9500 | 0.2154 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.6251 | 9600 | 0.2142 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.6524 | 9700 | 0.2144 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.6798 | 9800 | 0.215 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.7071 | 9900 | 0.2142 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.7345 | 10000 | 0.2139 | 0.2174 | -19.9351 | -16.2271 | -17.0315 | -14.7466 | -16.7390 | -17.6995 | -16.8551 | -19.1143 | -17.8625 | -16.9311 | -18.7746 | -19.6834 | -19.3393 | -16.4985 | -15.9824 | -16.2615 | -17.5108 | -16.5283 | -17.3583 | -16.3128 | -17.5869 | -17.3905 | -17.1750 | -18.1255 | -18.1899 | -18.6787 |
2.7618 | 10100 | 0.2134 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.7892 | 10200 | 0.2141 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.8165 | 10300 | 0.2147 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.8439 | 10400 | 0.2138 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.8712 | 10500 | 0.2133 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.8986 | 10600 | 0.2129 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.9259 | 10700 | 0.2129 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.9532 | 10800 | 0.2129 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.9806 | 10900 | 0.214 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.46.2
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}