Text Generation
Safetensors
qwen2
chat
conversational
Eval Results
4-bit precision
luigi86's picture
Update README.md
d9f97ff verified
---
language:
- en
- fr
- de
- es
- it
- pt
- ru
- zh
- ja
license: other
tags:
- chat
base_model: Qwen/Qwen2-72B-Instruct
datasets:
- Doctor-Shotgun/C2-Stheno
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- anthracite-org/nopm_claude_writing_fixed
license_name: tongyi-qianwen
license_link: https://huggingface.co/anthracite-org/magnum-v2-72b/blob/main/LICENSE
pipeline_tag: text-generation
model-index:
- name: magnum-v2-72b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 75.6
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v2-72b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 57.85
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v2-72b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 31.65
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v2-72b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 18.12
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v2-72b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 14.18
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v2-72b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.51
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v2-72b
name: Open LLM Leaderboard
---
# MLX Format and Quantizations for Magnum v2 72b
Quantized to 4 bpw precision and tested using the `mlx_lm` utility on a 64GiB URAM M1 Max.
See [original model](https://huggingface.co/anthracite-org/magnum-v2-72b) for further details.
Larger, 8bpw quants available at [mlx-community](https://huggingface.co/mlx-community/magnum-v2-72b).
# Original Model card
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6491e00e057b0928b3e07b75/u8B-5bEeroN549uxUIisV.png)
This is the seventh (Lucky!) in a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus. This model is fine-tuned on top of [Qwen-2 72B Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct).
## Prompting
Model has been Instruct tuned with the ChatML formatting. A typical input would look like this:
```py
"""<|im_start|>user
Hi there!<|im_end|>
<|im_start|>assistant
Nice to meet you!<|im_end|>
<|im_start|>user
Can I ask a question?<|im_end|>
<|im_start|>assistant
"""
```
## Credits
- [anthracite-org/Stheno-Data-Filtered](https://huggingface.co/datasets/anthracite-org/Stheno-Data-Filtered)
- [anthracite-org/kalo-opus-instruct-22k-no-refusal](https://huggingface.co/datasets/anthracite-org/kalo-opus-instruct-22k-no-refusal)
- [anthracite-org/nopm_claude_writing_fixed](https://huggingface.co/datasets/anthracite-org/nopm_claude_writing_fixed)
This model has been a team effort, and the credits goes to all members of Anthracite.
## Training
The training was done for 2 epochs. We used 8x [AMD Instinct™ MI300X Accelerators](https://www.amd.com/en/products/accelerators/instinct/mi300/mi300x.html) for the full-parameter fine-tuning of the model.
We also trained with a weight decay of 0.01 to help further stabilize the loss trajectory and mitigate catastrophic forgetting, and utilize a peak learning rate of 4e-6 to prevent the 2nd epoch loss from dropping too significantly (as it is a strong indicator of overfitting).
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6491e00e057b0928b3e07b75/hVd5gNqSLOlWTkUb0A7iE.png)
Sample Packing was done for 16k tokens rather than the 8k tokens used in our previous runs.
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
## Safety
...
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_anthracite-org__magnum-v2-72b)
| Metric |Value|
|-------------------|----:|
|Avg. |41.15|
|IFEval (0-Shot) |75.60|
|BBH (3-Shot) |57.85|
|MATH Lvl 5 (4-Shot)|31.65|
|GPQA (0-shot) |18.12|
|MuSR (0-shot) |14.18|
|MMLU-PRO (5-shot) |49.51|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_anthracite-org__magnum-v2-72b)
| Metric |Value|
|-------------------|----:|
|Avg. |41.15|
|IFEval (0-Shot) |75.60|
|BBH (3-Shot) |57.85|
|MATH Lvl 5 (4-Shot)|31.65|
|GPQA (0-shot) |18.12|
|MuSR (0-shot) |14.18|
|MMLU-PRO (5-shot) |49.51|