biomedical-roberta-finetuned-iomed_task

This model is a fine-tuned version of PlanTL-GOB-ES/roberta-base-biomedical-es on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0582
  • Precision: 0.2269
  • Recall: 0.4283
  • F1: 0.2966
  • Accuracy: 0.7695

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.1e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.2536 2.0 1520 1.2135 0.1082 0.2685 0.1542 0.7422
1.0249 4.0 3040 1.0510 0.1448 0.3244 0.2002 0.7650
0.9 6.0 4560 1.0098 0.1587 0.3512 0.2186 0.7694
0.8002 8.0 6080 1.0143 0.1835 0.3795 0.2474 0.7664
0.7195 10.0 7600 1.0173 0.2007 0.4055 0.2685 0.7691
0.693 12.0 9120 1.0218 0.1991 0.4079 0.2676 0.7683
0.6139 14.0 10640 1.0394 0.2063 0.4071 0.2738 0.7672
0.616 16.0 12160 1.0376 0.2141 0.4142 0.2823 0.7695
0.5911 18.0 13680 1.0491 0.2240 0.4268 0.2938 0.7697
0.6042 20.0 15200 1.0582 0.2269 0.4283 0.2966 0.7695

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
106
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for luisgasco/biomedical-roberta-finetuned-iomed_task

Finetuned
(1)
this model