lukaspetersson's picture
lukaspetersson/tinyllama-addition-refuse
477b0e8 verified
metadata
library_name: peft
tags:
  - trl
  - sft
  - unsloth
  - generated_from_trainer
datasets:
  - generator
base_model: unsloth/tinyllama-chat-bnb-4bit
model-index:
  - name: outputs
    results: []

outputs

This model is a fine-tuned version of unsloth/tinyllama-chat-bnb-4bit on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4551

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 3407
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.9638 0.0 1 1.9504
1.9792 0.0 2 1.9467
1.9213 0.0 3 1.9308
2.0225 0.0 4 1.8936
1.8364 0.0 5 1.8278
1.7729 0.0 6 1.7366
1.9591 0.01 7 1.6324
1.6693 0.01 8 1.5278
1.6387 0.01 9 1.4367
1.5681 0.01 10 1.3741
1.3459 0.01 11 1.3300
1.311 0.01 12 1.2931
1.2721 0.01 13 1.2534
1.353 0.01 14 1.2140
1.1664 0.01 15 1.1727
1.27 0.01 16 1.1344
1.1007 0.01 17 1.0966
1.1035 0.01 18 1.0608
1.0744 0.01 19 1.0278
1.0491 0.02 20 0.9973
1.0057 0.02 21 0.9688
0.9435 0.02 22 0.9423
0.9612 0.02 23 0.9169
0.9811 0.02 24 0.8932
0.9263 0.02 25 0.8700
0.8581 0.02 26 0.8468
0.8351 0.02 27 0.8237
0.8019 0.02 28 0.8008
0.8526 0.02 29 0.7786
0.773 0.02 30 0.7571
0.7436 0.02 31 0.7365
0.7455 0.03 32 0.7172
0.747 0.03 33 0.6995
0.727 0.03 34 0.6834
0.6859 0.03 35 0.6687
0.6642 0.03 36 0.6552
0.6715 0.03 37 0.6428
0.6538 0.03 38 0.6311
0.5947 0.03 39 0.6202
0.6537 0.03 40 0.6102
0.601 0.03 41 0.6008
0.5956 0.03 42 0.5921
0.5875 0.03 43 0.5842
0.5737 0.03 44 0.5769
0.5618 0.04 45 0.5701
0.546 0.04 46 0.5638
0.5908 0.04 47 0.5578
0.6172 0.04 48 0.5520
0.5652 0.04 49 0.5467
0.5357 0.04 50 0.5417
0.5524 0.04 51 0.5370
0.5352 0.04 52 0.5326
0.5356 0.04 53 0.5283
0.518 0.04 54 0.5242
0.5273 0.04 55 0.5201
0.5099 0.04 56 0.5161
0.5158 0.04 57 0.5123
0.521 0.05 58 0.5084
0.5177 0.05 59 0.5047
0.4964 0.05 60 0.5010
0.502 0.05 61 0.4974
0.5078 0.05 62 0.4942
0.4814 0.05 63 0.4913
0.4863 0.05 64 0.4887
0.4998 0.05 65 0.4864
0.5106 0.05 66 0.4842
0.5273 0.05 67 0.4822
0.4874 0.05 68 0.4803
0.4697 0.05 69 0.4785
0.4796 0.05 70 0.4768
0.4767 0.06 71 0.4753
0.4582 0.06 72 0.4739
0.5084 0.06 73 0.4725
0.4566 0.06 74 0.4712
0.4583 0.06 75 0.4700
0.4753 0.06 76 0.4689
0.4528 0.06 77 0.4678
0.4617 0.06 78 0.4667
0.499 0.06 79 0.4656
0.4368 0.06 80 0.4646
0.4939 0.06 81 0.4637
0.4446 0.06 82 0.4627
0.4428 0.07 83 0.4618
0.4737 0.07 84 0.4611
0.4391 0.07 85 0.4603
0.4985 0.07 86 0.4597
0.45 0.07 87 0.4590
0.4642 0.07 88 0.4585
0.4633 0.07 89 0.4579
0.4233 0.07 90 0.4574
0.4478 0.07 91 0.4570
0.4768 0.07 92 0.4565
0.4665 0.07 93 0.4562
0.4504 0.07 94 0.4560
0.4692 0.07 95 0.4557
0.4326 0.08 96 0.4555
0.4727 0.08 97 0.4554
0.4658 0.08 98 0.4553
0.4905 0.08 99 0.4552
0.4501 0.08 100 0.4551

Framework versions

  • PEFT 0.8.2
  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2