Nepali-BERT-sentiment

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the Custom Devangari Datasets dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6887
  • Accuracy: 0.8660
  • F1: 0.4658
  • Precision: 0.4343
  • Recall: 0.5021

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.5999 1.0 595 0.5313 0.7274 0.3965 0.2670 0.7700
0.5114 2.0 1190 0.4717 0.7745 0.4427 0.3106 0.7700
0.4005 3.0 1785 0.4986 0.7907 0.4556 0.3266 0.7532
0.3087 4.0 2380 0.6887 0.8660 0.4658 0.4343 0.5021
0.2292 5.0 2975 0.8148 0.8626 0.4615 0.4240 0.5063

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.2
  • Tokenizers 0.19.1
Downloads last month
24
Safetensors
Model size
167M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for luluw/Nepali-BERT-sentiment

Finetuned
(1631)
this model