metadata
language:
- en
- ko
license: other
license_name: exaone
license_link: LICENSE
tags:
- text-generation-inference
- transformers
- trl
- sft
- reasoning
- lg-ai
- exaone
- exaone-3.5
- o1
base_model: LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct
datasets:
- KingNish/reasoning-base-20k
Model Description
An uncensored reasoning EXAONE 3.5 model trained on reasoning data. Now with a full epoch!
It has been trained using improved training code, and gives an improved performance. Here is what inference code you should use:
from transformers import AutoModelForCausalLM, AutoTokenizer
MAX_REASONING_TOKENS = 1024
MAX_RESPONSE_TOKENS = 512
model_name = "lunahr/thea-pro-2b-100r"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Which is greater 9.9 or 9.11 ??"
messages = [
{"role": "user", "content": prompt}
]
# Generate reasoning
input_ids = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True, return_tensors="pt")
output = model.generate(
input_ids.to("cuda"),
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=MAX_REASONING_TOKENS,
do_sample=False,
)
print("REASONING: " + tokenizer.decode(output[0]))
# Generate answer
messages.append({"role": "reasoning", "content": reasoning_output})
input_ids = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, return_tensors="pt")
output = model.generate(
input_ids.to("cuda"),
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=MAX_RESPONSE_TOKENS,
do_sample=False,
)
print("REASONING: " + tokenizer.decode(output[0]))
- Trained by: Piotr Zalewski
- License: exaone
- Finetuned from model: LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct
- Dataset used: KingNish/reasoning-base-20k
This Llama model was trained faster than Unsloth using custom training code.
Visit https://www.kaggle.com/code/piotr25691/distributed-hf-training-with-2xt4 to find out how you can finetune your models using BOTH of the Kaggle provided GPUs.