ALBERT Persian

A Lite BERT for Self-supervised Learning of Language Representations for the Persian Language

میتونی بهش بگی برت_کوچولو

ALBERT-Persian is the first attempt on ALBERT for the Persian Language. The model was trained based on Google's ALBERT BASE Version 2.0 over various writing styles from numerous subjects (e.g., scientific, novels, news) with more than 3.9M documents, 73M sentences, and 1.3B words, like the way we did for ParsBERT.

Please follow the ALBERT-Persian repo for the latest information about previous and current models.

Persian Sentiment [Digikala, SnappFood, DeepSentiPers]

It aims to classify text, such as comments, based on their emotional bias. We tested three well-known datasets for this task: Digikala user comments, SnappFood user comments, and DeepSentiPers in two binary-form and multi-form types.

DeepSentiPers

which is a balanced and augmented version of SentiPers, contains 12,138 user opinions about digital products labeled with five different classes; two positives (i.e., happy and delighted), two negatives (i.e., furious and angry) and one neutral class. Therefore, this dataset can be utilized for both multi-class and binary classification. In the case of binary classification, the neutral class and its corresponding sentences are removed from the dataset.

Binary:

  1. Negative (Furious + Angry)
  2. Positive (Happy + Delighted)

Multi

  1. Furious
  2. Angry
  3. Neutral
  4. Happy
  5. Delighted
Label #
Furious 236
Angry 1357
Neutral 2874
Happy 2848
Delighted 2516

Download You can download the dataset from:

Results

The following table summarizes the F1 score obtained as compared to other models and architectures.

Dataset ALBERT-fa-base-v2 ParsBERT-v1 mBERT DeepSentiPers
SentiPers (Multi Class) 66.12 71.11 - 69.33
SentiPers (Binary Class) 91.09 92.13 - 91.98

BibTeX entry and citation info

Please cite in publications as the following:

@misc{ALBERTPersian,
  author = {Mehrdad Farahani},
  title = {ALBERT-Persian: A Lite BERT for Self-supervised Learning of Language Representations for the Persian Language},
  year = {2020},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/m3hrdadfi/albert-persian}},
}

@article{ParsBERT,
    title={ParsBERT: Transformer-based Model for Persian Language Understanding},
    author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri},
    journal={ArXiv},
    year={2020},
    volume={abs/2005.12515}
}

Questions?

Post a Github issue on the ALBERT-Persian repo.

Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.