Wav2Vec2-Large-XLSR-53-Icelandic
Fine-tuned facebook/wav2vec2-large-xlsr-53 in Icelandic using Malromur. When using this model, make sure that your speech input is sampled at 16kHz.
Usage
The model can be used directly (without a language model) as follows:
Requirements
# requirement packages
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
!pip install jiwer
!pip install num2words
Normalizer
# num2word packages
# Original source: https://github.com/savoirfairelinux/num2words
!mkdir -p ./num2words
!wget -O num2words/__init__.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/__init__.py
!wget -O num2words/base.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/base.py
!wget -O num2words/compat.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/compat.py
!wget -O num2words/currency.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/currency.py
!wget -O num2words/lang_EU.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/lang_EU.py
!wget -O num2words/lang_IS.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/lang_IS.py
!wget -O num2words/utils.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/utils.py
# Malromur_test selected based on gender and age
!wget -O malromur_test.csv https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/malromur_test.csv
# Normalizer
!wget -O normalizer.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/normalizer.py
Prediction
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset
import numpy as np
import re
import string
import IPython.display as ipd
from normalizer import Normalizer
normalizer = Normalizer(lang="is")
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
batch["speech"] = speech_array
return batch
def predict(batch):
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)
return batch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-icelandic")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-icelandic").to(device)
dataset = load_dataset("csv", data_files={"test": "./malromur_test.csv"})["test"]
dataset = dataset.map(
normalizer,
fn_kwargs={"do_lastspace_removing": True, "text_key_name": "cleaned_sentence"},
remove_columns=list(set(dataset.column_names) - set(['cleaned_sentence', 'path']))
)
dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict, batched=True, batch_size=8)
max_items = np.random.randint(0, len(result), 20).tolist()
for i in max_items:
reference, predicted = result["cleaned_sentence"][i], result["predicted"][i]
print("reference:", reference)
print("predicted:", predicted)
print('---')
Output: ```text reference: eða eitthvað annað dýr predicted: eða eitthvað annað dýr
reference: oddgerður predicted: oddgerður
reference: eiðný predicted: eiðný
reference: löndum predicted: löndum
reference: tileinkaði bróður sínum markið predicted: tileinkaði bróður sínum markið
reference: þetta er svo mikill hégómi predicted: þetta er svo mikill hégómi
reference: timarit is predicted: timarit is
reference: stefna strax upp aftur predicted: stefna strax upp aftur
reference: brekkuflöt predicted: brekkuflöt
reference: áætlunarferð frestað vegna veðurs predicted: áætluna ferð frestað vegna veðurs
reference: sagði af sér vegna kláms predicted: sagði af sér vegni kláms
reference: grímúlfur predicted: grímúlgur
reference: lýsti sig saklausan predicted: lýsti sig saklausan
reference: belgingur is predicted: belgingur is
reference: sambía predicted: sambía
reference: geirastöðum predicted: geirastöðum
reference: varð tvisvar fyrir eigin bíl predicted: var tvisvar fyrir eigin bíl
reference: reykjavöllum predicted: reykjavöllum
reference: miklir menn eru þeir þremenningar predicted: miklir menn eru þeir þremenningar
reference: handverkoghonnun is predicted: handverkoghonnun is
## Evaluation
The model can be evaluated as follows on the test data of Malromur.
```python
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset, load_metric
import numpy as np
import re
import string
from normalizer import Normalizer
normalizer = Normalizer(lang="is")
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
batch["speech"] = speech_array
return batch
def predict(batch):
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)
return batch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-icelandic")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-icelandic").to(device)
dataset = load_dataset("csv", data_files={"test": "./malromur_test.csv"})["test"]
dataset = dataset.map(
normalizer,
fn_kwargs={"do_lastspace_removing": True, "text_key_name": "cleaned_sentence"},
remove_columns=list(set(dataset.column_names) - set(['cleaned_sentence', 'path']))
)
dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict, batched=True, batch_size=8)
wer = load_metric("wer")
print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["cleaned_sentence"])))
Test Result:
- WER: 09.21%
Training & Report
The Common Voice train
, validation
datasets were used for training.
You can see the training states here
The script used for training can be found here
Questions?
Post a Github issue on the Wav2Vec repo.
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.