metadata
tags:
- generated_from_keras_callback
model-index:
- name: madatnlp/kor-math-roberta-finetune
results: []
madatnlp/kor-math-roberta-finetune
This model is a fine-tuned version of klue/roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.7393
- Validation Loss: 0.7801
- Epoch: 45
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Validation Loss | Epoch |
---|---|---|
3.6637 | 2.2056 | 0 |
2.0866 | 1.6338 | 1 |
1.7565 | 1.4797 | 2 |
1.5604 | 1.4183 | 3 |
1.4554 | 1.2678 | 4 |
1.3784 | 1.2015 | 5 |
1.2908 | 0.9909 | 6 |
1.2265 | 1.1029 | 7 |
1.2524 | 1.0225 | 8 |
1.1722 | 1.1167 | 9 |
1.1396 | 0.9434 | 10 |
1.1002 | 1.0683 | 11 |
1.0693 | 1.0637 | 12 |
1.0896 | 0.9698 | 13 |
1.0590 | 0.9038 | 14 |
1.0357 | 0.9302 | 15 |
1.0557 | 0.8600 | 16 |
1.0036 | 0.7892 | 17 |
1.0283 | 0.9425 | 18 |
0.9883 | 0.7521 | 19 |
0.9797 | 0.7950 | 20 |
0.9511 | 0.8072 | 21 |
0.9023 | 0.8780 | 22 |
0.9074 | 0.8745 | 23 |
0.9324 | 0.7436 | 24 |
0.8921 | 0.9032 | 25 |
0.9098 | 0.8011 | 26 |
0.8843 | 0.8527 | 27 |
0.8756 | 0.7803 | 28 |
0.8759 | 0.8922 | 29 |
0.8472 | 0.8286 | 30 |
0.8156 | 0.7801 | 31 |
0.8401 | 0.7904 | 32 |
0.8400 | 0.9007 | 33 |
0.8368 | 0.6959 | 34 |
0.8429 | 0.6646 | 35 |
0.8496 | 0.7386 | 36 |
0.8168 | 0.7544 | 37 |
0.7927 | 0.8467 | 38 |
0.8025 | 0.7375 | 39 |
0.7893 | 0.7091 | 40 |
0.7762 | 0.6758 | 41 |
0.7516 | 0.8641 | 42 |
0.7645 | 0.7587 | 43 |
0.7790 | 0.7386 | 44 |
0.7393 | 0.7801 | 45 |
Framework versions
- Transformers 4.18.0
- TensorFlow 2.8.0
- Datasets 2.1.0
- Tokenizers 0.12.1