dax_query_llama

This model is a fine-tuned version of meta-llama/Llama-3.1-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 9.5530
  • Rouge1: 0.3920
  • Rouge2: 0.0986
  • Rougel: 0.3668
  • Rougelsum: 0.3670

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
No log 1.0 1 9.5530 0.3920 0.0986 0.3668 0.3670
No log 2.0 2 9.5530 0.3920 0.0986 0.3668 0.3670
No log 3.0 3 9.5530 0.3920 0.0986 0.3668 0.3670

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.1
  • Pytorch 2.5.1+cu118
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for madhes1/dax_query_llama

Adapter
(150)
this model