speecht5_finetuned_marar2000

This model is a fine-tuned version of maghrane/speecht5_finetuned_marar1000 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4801

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.528 0.7976 100 0.5440
0.5453 1.5952 200 0.5655
0.5395 2.3928 300 0.5418
0.5421 3.1904 400 0.5570
0.5384 3.9880 500 0.5324
0.5447 4.7856 600 0.5454
0.5343 5.5833 700 0.5220
0.5165 6.3809 800 0.5269
0.5171 7.1785 900 0.5223
0.507 7.9761 1000 0.5227
0.5021 8.7737 1100 0.5052
0.4982 9.5713 1200 0.5081
0.488 10.3689 1300 0.5026
0.4787 11.1665 1400 0.4902
0.4849 11.9641 1500 0.4936
0.4778 12.7617 1600 0.4934
0.4646 13.5593 1700 0.4858
0.4615 14.3569 1800 0.4894
0.4716 15.1545 1900 0.4832
0.4607 15.9521 2000 0.4801

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Tokenizers 0.20.3
Downloads last month
3
Safetensors
Model size
144M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for maghrane/speecht5_finetuned_marar2000

Finetuned
(1)
this model