metadata
license: other
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b4-finetuned-segments-torso
results: []
segformer-b4-finetuned-segments-torso
This model is a fine-tuned version of nvidia/mit-b4 on the carllau999/torso_mask dataset. It achieves the following results on the evaluation set:
- Loss: 0.0823
- Mean Iou: 0.4815
- Mean Accuracy: 0.9630
- Overall Accuracy: 0.9630
- Accuracy Unlabeled: nan
- Accuracy Torso: 0.9630
- Iou Unlabeled: 0.0
- Iou Torso: 0.9630
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Torso | Iou Unlabeled | Iou Torso |
---|---|---|---|---|---|---|---|---|---|---|
0.1599 | 1.0 | 20 | 0.1789 | 0.3774 | 0.7549 | 0.7549 | nan | 0.7549 | 0.0 | 0.7549 |
0.0432 | 2.0 | 40 | 0.1167 | 0.4549 | 0.9099 | 0.9099 | nan | 0.9099 | 0.0 | 0.9099 |
0.0329 | 3.0 | 60 | 0.1006 | 0.4489 | 0.8978 | 0.8978 | nan | 0.8978 | 0.0 | 0.8978 |
0.0392 | 4.0 | 80 | 0.1742 | 0.4862 | 0.9724 | 0.9724 | nan | 0.9724 | 0.0 | 0.9724 |
0.025 | 5.0 | 100 | 0.1047 | 0.4726 | 0.9452 | 0.9452 | nan | 0.9452 | 0.0 | 0.9452 |
0.0229 | 6.0 | 120 | 0.1330 | 0.4771 | 0.9543 | 0.9543 | nan | 0.9543 | 0.0 | 0.9543 |
0.0184 | 7.0 | 140 | 0.1060 | 0.4749 | 0.9498 | 0.9498 | nan | 0.9498 | 0.0 | 0.9498 |
0.0117 | 8.0 | 160 | 0.1163 | 0.4719 | 0.9439 | 0.9439 | nan | 0.9439 | 0.0 | 0.9439 |
0.0202 | 9.0 | 180 | 0.0790 | 0.4634 | 0.9268 | 0.9268 | nan | 0.9268 | 0.0 | 0.9268 |
0.0124 | 10.0 | 200 | 0.1063 | 0.4767 | 0.9534 | 0.9534 | nan | 0.9534 | 0.0 | 0.9534 |
0.0159 | 11.0 | 220 | 0.0979 | 0.4782 | 0.9563 | 0.9563 | nan | 0.9563 | 0.0 | 0.9563 |
0.0093 | 12.0 | 240 | 0.0850 | 0.4746 | 0.9492 | 0.9492 | nan | 0.9492 | 0.0 | 0.9492 |
0.0117 | 13.0 | 260 | 0.0870 | 0.4742 | 0.9484 | 0.9484 | nan | 0.9484 | 0.0 | 0.9484 |
0.0087 | 14.0 | 280 | 0.1058 | 0.4809 | 0.9617 | 0.9617 | nan | 0.9617 | 0.0 | 0.9617 |
0.0085 | 15.0 | 300 | 0.0897 | 0.4743 | 0.9485 | 0.9485 | nan | 0.9485 | 0.0 | 0.9485 |
0.01 | 16.0 | 320 | 0.0813 | 0.4774 | 0.9547 | 0.9547 | nan | 0.9547 | 0.0 | 0.9547 |
0.0109 | 17.0 | 340 | 0.0980 | 0.4810 | 0.9621 | 0.9621 | nan | 0.9621 | 0.0 | 0.9621 |
0.0076 | 18.0 | 360 | 0.0923 | 0.4787 | 0.9574 | 0.9574 | nan | 0.9574 | 0.0 | 0.9574 |
0.0067 | 19.0 | 380 | 0.0874 | 0.4778 | 0.9556 | 0.9556 | nan | 0.9556 | 0.0 | 0.9556 |
0.0079 | 20.0 | 400 | 0.0821 | 0.4766 | 0.9533 | 0.9533 | nan | 0.9533 | 0.0 | 0.9533 |
0.007 | 21.0 | 420 | 0.0876 | 0.4746 | 0.9491 | 0.9491 | nan | 0.9491 | 0.0 | 0.9491 |
0.0091 | 22.0 | 440 | 0.0924 | 0.4695 | 0.9390 | 0.9390 | nan | 0.9390 | 0.0 | 0.9390 |
0.0089 | 23.0 | 460 | 0.0711 | 0.4781 | 0.9563 | 0.9563 | nan | 0.9563 | 0.0 | 0.9563 |
0.0067 | 24.0 | 480 | 0.0743 | 0.4759 | 0.9518 | 0.9518 | nan | 0.9518 | 0.0 | 0.9518 |
0.0061 | 25.0 | 500 | 0.0868 | 0.4803 | 0.9605 | 0.9605 | nan | 0.9605 | 0.0 | 0.9605 |
0.0053 | 26.0 | 520 | 0.0814 | 0.4800 | 0.9599 | 0.9599 | nan | 0.9599 | 0.0 | 0.9599 |
0.0055 | 27.0 | 540 | 0.0779 | 0.4806 | 0.9612 | 0.9612 | nan | 0.9612 | 0.0 | 0.9612 |
0.0066 | 28.0 | 560 | 0.0810 | 0.4814 | 0.9628 | 0.9628 | nan | 0.9628 | 0.0 | 0.9628 |
0.0077 | 29.0 | 580 | 0.0814 | 0.4810 | 0.9621 | 0.9621 | nan | 0.9621 | 0.0 | 0.9621 |
0.008 | 30.0 | 600 | 0.0852 | 0.4829 | 0.9658 | 0.9658 | nan | 0.9658 | 0.0 | 0.9658 |
0.0062 | 31.0 | 620 | 0.0839 | 0.4833 | 0.9665 | 0.9665 | nan | 0.9665 | 0.0 | 0.9665 |
0.0063 | 32.0 | 640 | 0.0778 | 0.4835 | 0.9671 | 0.9671 | nan | 0.9671 | 0.0 | 0.9671 |
0.0055 | 33.0 | 660 | 0.0826 | 0.4816 | 0.9633 | 0.9633 | nan | 0.9633 | 0.0 | 0.9633 |
0.0057 | 34.0 | 680 | 0.0831 | 0.4816 | 0.9632 | 0.9632 | nan | 0.9632 | 0.0 | 0.9632 |
0.007 | 35.0 | 700 | 0.0809 | 0.4815 | 0.9630 | 0.9630 | nan | 0.9630 | 0.0 | 0.9630 |
0.007 | 36.0 | 720 | 0.0776 | 0.4809 | 0.9618 | 0.9618 | nan | 0.9618 | 0.0 | 0.9618 |
0.0075 | 37.0 | 740 | 0.0787 | 0.4809 | 0.9618 | 0.9618 | nan | 0.9618 | 0.0 | 0.9618 |
0.0054 | 38.0 | 760 | 0.0838 | 0.4817 | 0.9633 | 0.9633 | nan | 0.9633 | 0.0 | 0.9633 |
0.0061 | 39.0 | 780 | 0.0824 | 0.4820 | 0.9639 | 0.9639 | nan | 0.9639 | 0.0 | 0.9639 |
0.0063 | 40.0 | 800 | 0.0799 | 0.4825 | 0.9650 | 0.9650 | nan | 0.9650 | 0.0 | 0.9650 |
0.0065 | 41.0 | 820 | 0.0805 | 0.4813 | 0.9626 | 0.9626 | nan | 0.9626 | 0.0 | 0.9626 |
0.0052 | 42.0 | 840 | 0.0838 | 0.4822 | 0.9644 | 0.9644 | nan | 0.9644 | 0.0 | 0.9644 |
0.007 | 43.0 | 860 | 0.0841 | 0.4825 | 0.9650 | 0.9650 | nan | 0.9650 | 0.0 | 0.9650 |
0.0054 | 44.0 | 880 | 0.0822 | 0.4817 | 0.9634 | 0.9634 | nan | 0.9634 | 0.0 | 0.9634 |
0.0055 | 45.0 | 900 | 0.0815 | 0.4817 | 0.9633 | 0.9633 | nan | 0.9633 | 0.0 | 0.9633 |
0.0084 | 46.0 | 920 | 0.0815 | 0.4819 | 0.9638 | 0.9638 | nan | 0.9638 | 0.0 | 0.9638 |
0.005 | 47.0 | 940 | 0.0810 | 0.4814 | 0.9627 | 0.9627 | nan | 0.9627 | 0.0 | 0.9627 |
0.0044 | 48.0 | 960 | 0.0822 | 0.4826 | 0.9652 | 0.9652 | nan | 0.9652 | 0.0 | 0.9652 |
0.0053 | 49.0 | 980 | 0.0819 | 0.4821 | 0.9642 | 0.9642 | nan | 0.9642 | 0.0 | 0.9642 |
0.0066 | 50.0 | 1000 | 0.0823 | 0.4815 | 0.9630 | 0.9630 | nan | 0.9630 | 0.0 | 0.9630 |
Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cpu
- Datasets 2.11.0
- Tokenizers 0.13.2