metadata
library_name: transformers
license: apache-2.0
base_model: imrajeshkr/distilhubert-finetuned-speech_commands
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- precision
- recall
- f1
model-index:
- name: >-
distilhubert-finetuned-speech_commands-finetuned-englishalphabets-classification
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: audiofolder
type: audiofolder
config: default
split: validation
args: default
metrics:
- name: Precision
type: precision
value: 0.9855379188712521
- name: Recall
type: recall
value: 0.9827160493827161
- name: F1
type: f1
value: 0.9825011002108681
distilhubert-finetuned-speech_commands-finetuned-englishalphabets-classification
This model is a fine-tuned version of imrajeshkr/distilhubert-finetuned-speech_commands on the audiofolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0563
- Precision: 0.9855
- Recall: 0.9827
- F1: 0.9825
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
---|---|---|---|---|---|---|
0.2886 | 1.0 | 1216 | 0.2477 | 0.9098 | 0.9284 | 0.9127 |
0.1426 | 2.0 | 2432 | 0.0792 | 0.9835 | 0.9802 | 0.9795 |
0.0678 | 3.0 | 3648 | 0.0601 | 0.9827 | 0.9790 | 0.9780 |
0.0062 | 4.0 | 4864 | 0.0601 | 0.9848 | 0.9815 | 0.9812 |
0.027 | 5.0 | 6080 | 0.0563 | 0.9855 | 0.9827 | 0.9825 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.2.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0