|
--- |
|
library_name: transformers |
|
tags: |
|
- llama |
|
- trl |
|
datasets: |
|
- elyza/ELYZA-tasks-100 |
|
language: |
|
- ja |
|
base_model: |
|
- llm-jp/llm-jp-3-13b |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
|
|
|
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
東大松尾研LLM講座2024の最終課題向けのelyza-tasks-100-TV_0.jsonlの出力用にFinetuningしたモデルです。 |
|
モデルの利用については、提供いただいたOmmniCampusの環境およびサンプルコードに沿ったものとなっております。 |
|
|
|
- **Developed by:** maktag |
|
- **Language(s) (NLP):** Japanese |
|
- **Finetuned from model [optional]:** llm-jp/llm-jp-3-13b |
|
|
|
|
|
## How to Get Started with the Model |
|
|
|
``` |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
# Load the fine-tuned model and tokenizer |
|
base_model_id = "llm-jp/llm-jp-3-13b" |
|
adapter_id = "maktag/llm-jp-3-13b-finetune8" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id) |
|
|
|
# QLoRA config |
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
) |
|
|
|
# Load model |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
quantization_config=bnb_config, |
|
device_map="auto", |
|
token = HF_TOKEN |
|
) |
|
|
|
# Load tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN) |
|
|
|
# 元のモデルにLoRAのアダプタを統合。 |
|
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN) |
|
``` |
|
|
|
[More Information Needed] |
|
|
|
## Training Details |
|
|
|
- Fine-Tuning Framework: LoRA-based PEFT (Parameter-Efficient Fine-Tuning). |
|
- Dataset: Proprietary Japanese instruction-following dataset. |
|
- Sequence Length: 512 tokens. |
|
- Hyperparameters: |
|
- Batch size: 32 |
|
- Learning rate: 1e-5 |
|
- Epochs: 3 |
|
|
|
### Training Data |
|
|
|
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> |
|
|
|
- [elyza/ELYZA-tasks-100](https://huggingface.co/datasets/elyza/ELYZA-tasks-100) |
|
- [Ichikara Instruction](https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/llmのための日本語インストラクションデータ-公開/) |