distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9748
  • Accuracy: {'accuracy': 0.88}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.3807 {'accuracy': 0.879}
0.4088 2.0 500 0.7833 {'accuracy': 0.838}
0.4088 3.0 750 0.6331 {'accuracy': 0.871}
0.2014 4.0 1000 0.6576 {'accuracy': 0.88}
0.2014 5.0 1250 0.7551 {'accuracy': 0.876}
0.0667 6.0 1500 0.8506 {'accuracy': 0.876}
0.0667 7.0 1750 0.8710 {'accuracy': 0.881}
0.0164 8.0 2000 0.9710 {'accuracy': 0.88}
0.0164 9.0 2250 0.9511 {'accuracy': 0.882}
0.0064 10.0 2500 0.9748 {'accuracy': 0.88}

Framework versions

  • PEFT 0.10.0
  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for malithimith/distilbert-base-uncased-lora-text-classification

Adapter
(228)
this model