Built with Axolotl

See axolotl config

axolotl version: 0.4.1

\base_model: NousResearch/Meta-Llama-3-8B-Instruct
adapter: lora
base_model: NousResearch/CodeLlama-13b-hf-flash
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - dd5a5c96e4e097cc_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/dd5a5c96e4e097cc_train_data.json
  type:
    field_input: title_en
    field_instruction: question
    field_output: context_en
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 256
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: mamung/b71a507d-7274-4e95-b159-c3e8507b448c
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.00015
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/dd5a5c96e4e097cc_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 2.0e-05
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: eddysang
wandb_mode: online
wandb_name: 6c79606a-e83f-4fc9-ab9c-6e73a2d64778
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 6c79606a-e83f-4fc9-ab9c-6e73a2d64778
warmup_steps: 20
weight_decay: 0.02
xformers_attention: false

b71a507d-7274-4e95-b159-c3e8507b448c

This model is a fine-tuned version of NousResearch/CodeLlama-13b-hf-flash on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2246

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00015
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=2e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0047 1 1.3780
5.3384 0.0420 9 1.3356
5.5578 0.0840 18 1.2789
5.3703 0.1260 27 1.2552
5.0916 0.1680 36 1.2455
5.4536 0.2100 45 1.2392
5.0543 0.2520 54 1.2349
4.8597 0.2940 63 1.2299
5.1176 0.3361 72 1.2269
5.0039 0.3781 81 1.2257
5.4577 0.4201 90 1.2249
5.0552 0.4621 99 1.2246

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
9
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for mamung/b71a507d-7274-4e95-b159-c3e8507b448c

Adapter
(172)
this model