final-ft__roberta-base-biomedical-clinical-es__70k-ultrasounds

This model is a fine-tuned version of BSC-LT/roberta-base-biomedical-clinical-es on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5971

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
No log 0.9978 229 0.9388
No log 2.0 459 0.8139
No log 2.9978 688 0.7544
0.9622 4.0 918 0.7302
0.9622 4.9978 1147 0.6878
0.9622 6.0 1377 0.6754
0.9622 6.9978 1606 0.6625
0.715 8.0 1836 0.6431
0.715 8.9978 2065 0.6278
0.715 10.0 2295 0.6361
0.715 10.9978 2524 0.6296
0.6597 12.0 2754 0.6164
0.6597 12.9978 2983 0.6117
0.6597 14.0 3213 0.6052
0.6597 14.9978 3442 0.6064
0.6354 16.0 3672 0.6225
0.6354 16.9978 3901 0.5974
0.6354 18.0 4131 0.6010
0.6354 18.9978 4360 0.5816
0.6354 19.9564 4580 0.5971

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
126M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for manucos/final-ft__roberta-base-biomedical-clinical-es__70k-ultrasounds

Finetuned
(3)
this model
Finetunes
1 model