finetuned_minilm

This model is a fine-tuned version of nreimers/MiniLM-L6-H384-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6736
  • Accuracy: 0.9023

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 12345
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5371 1.0 619 0.2941 0.8782
0.2763 2.0 1238 0.2590 0.8986
0.1899 3.0 1857 0.3081 0.8959
0.1257 4.0 2476 0.2576 0.9177
0.0929 5.0 3095 0.3949 0.9059
0.0806 6.0 3714 0.3304 0.9173
0.0629 7.0 4333 0.4214 0.9073
0.0474 8.0 4952 0.4625 0.9145
0.0498 9.0 5571 0.4227 0.9236
0.049 10.0 6190 0.5549 0.8945
0.0411 11.0 6809 0.3340 0.9341
0.0272 12.0 7428 0.3317 0.9291
0.0264 13.0 8047 0.4099 0.9305
0.0279 14.0 8666 0.4092 0.9268
0.0242 15.0 9285 0.4418 0.9318
0.0241 16.0 9904 0.4352 0.9273
0.0238 17.0 10523 0.5306 0.9259
0.0216 18.0 11142 0.4267 0.9241
0.0166 19.0 11761 0.5134 0.9255
0.0182 20.0 12380 0.6736 0.9023

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.