wav2vec2-large-xls-r-300m-tr-colab

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4316
  • Wer: 0.2905

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.9953 3.67 400 0.7024 0.7226
0.4046 7.34 800 0.4342 0.5343
0.201 11.01 1200 0.4396 0.5290
0.1513 14.68 1600 0.4319 0.4108
0.1285 18.35 2000 0.4422 0.3864
0.1086 22.02 2400 0.4568 0.3796
0.0998 25.69 2800 0.4687 0.3732
0.0863 29.36 3200 0.4726 0.3803
0.0809 33.03 3600 0.4479 0.3601
0.0747 36.7 4000 0.4624 0.3525
0.0692 40.37 4400 0.4366 0.3435
0.0595 44.04 4800 0.4204 0.3510
0.0584 47.71 5200 0.4202 0.3402
0.0545 51.38 5600 0.4366 0.3343
0.0486 55.05 6000 0.4492 0.3678
0.0444 58.72 6400 0.4471 0.3301
0.0406 62.39 6800 0.4382 0.3318
0.0341 66.06 7200 0.4295 0.3258
0.0297 69.72 7600 0.4336 0.3205
0.0295 73.39 8000 0.4240 0.3199
0.0261 77.06 8400 0.4316 0.3143
0.0247 80.73 8800 0.4300 0.3165
0.0207 84.4 9200 0.4380 0.3111
0.0203 88.07 9600 0.4218 0.2998
0.0174 91.74 10000 0.4271 0.2973
0.015 95.41 10400 0.4330 0.2939
0.0144 99.08 10800 0.4316 0.2905

Framework versions

  • Transformers 4.23.1
  • Pytorch 1.12.1+cu102
  • Datasets 2.5.2
  • Tokenizers 0.13.1
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train masusuka/wav2vec2-large-xls-r-300m-tr-colab