masusuka commited on
Commit
e0475a4
·
1 Parent(s): 83c2922

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice
7
+ model-index:
8
+ - name: wav2vec2-large-xls-r-300m-tr-colab
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2-large-xls-r-300m-tr-colab
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.4029
20
+ - Wer: 0.3116
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.0003
40
+ - train_batch_size: 16
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 2
44
+ - total_train_batch_size: 32
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 500
48
+ - num_epochs: 30
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
54
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
55
+ | 3.8607 | 3.67 | 400 | 0.7144 | 0.7305 |
56
+ | 0.4094 | 7.34 | 800 | 0.4222 | 0.5035 |
57
+ | 0.1958 | 11.01 | 1200 | 0.4438 | 0.4228 |
58
+ | 0.1353 | 14.68 | 1600 | 0.4536 | 0.3914 |
59
+ | 0.1062 | 18.35 | 2000 | 0.4161 | 0.3659 |
60
+ | 0.0791 | 22.02 | 2400 | 0.4192 | 0.3366 |
61
+ | 0.0635 | 25.69 | 2800 | 0.4048 | 0.3225 |
62
+ | 0.0511 | 29.36 | 3200 | 0.4029 | 0.3116 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.23.0
68
+ - Pytorch 1.12.1+cu113
69
+ - Datasets 2.5.2
70
+ - Tokenizers 0.13.1