whisper-large-v2-3swissdatasets

This model is a fine-tuned version of openai/whisper-large-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2418
  • Wer: 16.0707

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 7000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2962 0.0727 1000 0.3163 20.0659
0.2756 0.1454 2000 0.2962 19.2670
0.2405 0.2181 3000 0.2771 18.1353
0.2917 0.2908 4000 0.2644 17.5769
0.2117 0.3635 5000 0.2536 16.7275
0.2334 0.4362 6000 0.2455 16.3825
0.2408 0.5089 7000 0.2418 16.0707

Framework versions

  • Transformers 4.44.1
  • Pytorch 2.3.1+cu118
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for matildecs/whisper-large-v2-3swissdatasets

Finetuned
(186)
this model