swinv2-tiny-patch4-window8-256-finetuned-galaxy10-decals

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the matthieulel/galaxy10_decals dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4552
  • Accuracy: 0.8551
  • Precision: 0.8529
  • Recall: 0.8551
  • F1: 0.8513

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.7462 0.99 62 1.4592 0.4431 0.4309 0.4431 0.3967
1.1805 2.0 125 1.0335 0.6460 0.6741 0.6460 0.6241
0.9342 2.99 187 0.7051 0.7537 0.7478 0.7537 0.7394
0.786 4.0 250 0.6468 0.7745 0.7731 0.7745 0.7637
0.7062 4.99 312 0.6013 0.8038 0.8052 0.8038 0.8008
0.7011 6.0 375 0.5373 0.8123 0.8171 0.8123 0.8041
0.7014 6.99 437 0.5470 0.8044 0.8048 0.8044 0.7995
0.6447 8.0 500 0.5309 0.8083 0.8087 0.8083 0.8025
0.608 8.99 562 0.4836 0.8337 0.8323 0.8337 0.8300
0.6196 10.0 625 0.4797 0.8331 0.8293 0.8331 0.8268
0.6031 10.99 687 0.4863 0.8264 0.8274 0.8264 0.8239
0.5462 12.0 750 0.4749 0.8354 0.8341 0.8354 0.8313
0.5868 12.99 812 0.5269 0.8236 0.8268 0.8236 0.8171
0.5844 14.0 875 0.4402 0.8472 0.8447 0.8472 0.8430
0.5326 14.99 937 0.4635 0.8393 0.8359 0.8393 0.8353
0.5313 16.0 1000 0.4734 0.8365 0.8345 0.8365 0.8300
0.4893 16.99 1062 0.4675 0.8365 0.8335 0.8365 0.8316
0.4983 18.0 1125 0.4441 0.8444 0.8431 0.8444 0.8401
0.518 18.99 1187 0.4693 0.8416 0.8441 0.8416 0.8376
0.5228 20.0 1250 0.4732 0.8410 0.8379 0.8410 0.8358
0.4761 20.99 1312 0.4567 0.8489 0.8493 0.8489 0.8460
0.5311 22.0 1375 0.4582 0.8484 0.8469 0.8484 0.8433
0.4894 22.99 1437 0.4627 0.8467 0.8450 0.8467 0.8433
0.4791 24.0 1500 0.4580 0.8506 0.8493 0.8506 0.8481
0.479 24.99 1562 0.4625 0.8472 0.8443 0.8472 0.8433
0.4487 26.0 1625 0.4557 0.8495 0.8469 0.8495 0.8447
0.4515 26.99 1687 0.4501 0.8534 0.8510 0.8534 0.8500
0.4862 28.0 1750 0.4552 0.8551 0.8529 0.8551 0.8513
0.4348 28.99 1812 0.4512 0.8506 0.8486 0.8506 0.8469
0.4623 29.76 1860 0.4539 0.8551 0.8533 0.8551 0.8516

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1
Downloads last month
22
Safetensors
Model size
27.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for matthieulel/swinv2-tiny-patch4-window8-256-finetuned-galaxy10-decals

Finetuned
(94)
this model