run
from llama_cpp import Llama
llm = Llama(
model_path="/content/dracarys2-72b-instruct.Q2_K.gguf",
chat_format="llama-2"
)
llm.create_chat_completion(
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": "Who is Napoleon Bonaparte?"
}
]
)
not run
40 min
and not run
how it run ?
it run with llama cpp
!./llama-cli -m "/content/dracarys2-72b-instruct.Q2_K.gguf" -p "Hi you how are you" -n 50 -e -t 4
8min
!./llama-cli -m "/content/dracarys2-72b-instruct.Q2_K.gguf" -p "Hi you how are you" -n 50 -e -t 4
build: 3930 (9e041024) with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
main: llama backend init
main: load the model and apply lora adapter, if any
llama_model_loader: loaded meta data with 31 key-value pairs and 963 tensors from /content/dracarys2-72b-instruct.Q2_K.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen2
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Dracarys2 72B Instruct
llama_model_loader: - kv 3: general.finetune str = Instruct
llama_model_loader: - kv 4: general.basename str = Dracarys2
llama_model_loader: - kv 5: general.size_label str = 72B
llama_model_loader: - kv 6: general.license str = other
llama_model_loader: - kv 7: general.license.name str = tongyi-qianwen
llama_model_loader: - kv 8: general.license.link str = https://huggingface.co/Qwen/Qwen2.5-7...
llama_model_loader: - kv 9: general.tags arr[str,2] = ["chat", "text-generation"]
llama_model_loader: - kv 10: general.languages arr[str,1] = ["en"]
llama_model_loader: - kv 11: qwen2.block_count u32 = 80
llama_model_loader: - kv 12: qwen2.context_length u32 = 32768
llama_model_loader: - kv 13: qwen2.embedding_length u32 = 8192
llama_model_loader: - kv 14: qwen2.feed_forward_length u32 = 29568
llama_model_loader: - kv 15: qwen2.attention.head_count u32 = 64
llama_model_loader: - kv 16: qwen2.attention.head_count_kv u32 = 8
llama_model_loader: - kv 17: qwen2.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 18: qwen2.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 19: general.file_type u32 = 10
llama_model_loader: - kv 20: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 21: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 22: tokenizer.ggml.tokens arr[str,152064] = ["!", """, "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 23: tokenizer.ggml.token_type arr[i32,152064] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 24: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 25: tokenizer.ggml.eos_token_id u32 = 151645
llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 151643
llama_model_loader: - kv 27: tokenizer.ggml.bos_token_id u32 = 151643
llama_model_loader: - kv 28: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 29: tokenizer.chat_template str = {%- if tools %}\n {{- '<|im_start|>...
llama_model_loader: - kv 30: general.quantization_version u32 = 2
llama_model_loader: - type f32: 401 tensors
llama_model_loader: - type q2_K: 321 tensors
llama_model_loader: - type q3_K: 80 tensors
llama_model_loader: - type q5_K: 80 tensors
llama_model_loader: - type q6_K: 1 tensors
llama_model_loader: - type iq4_nl: 80 tensors
llm_load_vocab: control token: 151660 '<|fim_middle|>' is not marked as EOG
llm_load_vocab: control token: 151659 '<|fim_prefix|>' is not marked as EOG
llm_load_vocab: control token: 151653 '<|vision_end|>' is not marked as EOG
llm_load_vocab: control token: 151648 '<|box_start|>' is not marked as EOG
llm_load_vocab: control token: 151646 '<|object_ref_start|>' is not marked as EOG
llm_load_vocab: control token: 151649 '<|box_end|>' is not marked as EOG
llm_load_vocab: control token: 151655 '<|image_pad|>' is not marked as EOG
llm_load_vocab: control token: 151651 '<|quad_end|>' is not marked as EOG
llm_load_vocab: control token: 151647 '<|object_ref_end|>' is not marked as EOG
llm_load_vocab: control token: 151652 '<|vision_start|>' is not marked as EOG
llm_load_vocab: control token: 151654 '<|vision_pad|>' is not marked as EOG
llm_load_vocab: control token: 151656 '<|video_pad|>' is not marked as EOG
llm_load_vocab: control token: 151644 '<|im_start|>' is not marked as EOG
llm_load_vocab: control token: 151661 '<|fim_suffix|>' is not marked as EOG
llm_load_vocab: control token: 151650 '<|quad_start|>' is not marked as EOG
llm_load_vocab: special tokens cache size = 22
llm_load_vocab: token to piece cache size = 0.9310 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = qwen2
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 152064
llm_load_print_meta: n_merges = 151387
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 32768
llm_load_print_meta: n_embd = 8192
llm_load_print_meta: n_layer = 80
llm_load_print_meta: n_head = 64
llm_load_print_meta: n_head_kv = 8
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 8
llm_load_print_meta: n_embd_k_gqa = 1024
llm_load_print_meta: n_embd_v_gqa = 1024
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 29568
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 2
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 1000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 32768
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: ssm_dt_b_c_rms = 0
llm_load_print_meta: model type = 70B
llm_load_print_meta: model ftype = Q2_K - Medium
llm_load_print_meta: model params = 72.71 B
llm_load_print_meta: model size = 27.76 GiB (3.28 BPW)
llm_load_print_meta: general.name = Dracarys2 72B Instruct
llm_load_print_meta: BOS token = 151643 '<|endoftext|>'
llm_load_print_meta: EOS token = 151645 '<|im_end|>'
llm_load_print_meta: EOT token = 151645 '<|im_end|>'
llm_load_print_meta: PAD token = 151643 '<|endoftext|>'
llm_load_print_meta: LF token = 148848 'ÄĬ'
llm_load_print_meta: FIM PRE token = 151659 '<|fim_prefix|>'
llm_load_print_meta: FIM SUF token = 151661 '<|fim_suffix|>'
llm_load_print_meta: FIM MID token = 151660 '<|fim_middle|>'
llm_load_print_meta: FIM PAD token = 151662 '<|fim_pad|>'
llm_load_print_meta: FIM REP token = 151663 '<|repo_name|>'
llm_load_print_meta: FIM SEP token = 151664 '<|file_sep|>'
llm_load_print_meta: EOG token = 151643 '<|endoftext|>'
llm_load_print_meta: EOG token = 151645 '<|im_end|>'
llm_load_print_meta: EOG token = 151662 '<|fim_pad|>'
llm_load_print_meta: EOG token = 151663 '<|repo_name|>'
llm_load_print_meta: EOG token = 151664 '<|file_sep|>'
llm_load_print_meta: max token length = 256
llm_load_tensors: ggml ctx size = 0.42 MiB
llm_load_tensors: CPU buffer size = 28425.00 MiB
..................................................................................................
llama_new_context_with_model: n_ctx = 32768
llama_new_context_with_model: n_batch = 2048
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 1000000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CPU KV buffer size = 10240.00 MiB
llama_new_context_with_model: KV self size = 10240.00 MiB, K (f16): 5120.00 MiB, V (f16): 5120.00 MiB
llama_new_context_with_model: CPU output buffer size = 0.58 MiB
llama_new_context_with_model: CPU compute buffer size = 4224.01 MiB
llama_new_context_with_model: graph nodes = 2806
llama_new_context_with_model: graph splits = 1
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
main: llama threadpool init, n_threads = 4
system_info: n_threads = 4 (n_threads_batch = 4) / 2 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
sampler seed: 3277448049
sampler params:
repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
top_k = 40, tfs_z = 1.000, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, temp = 0.800
mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampler chain: logits -> logit-bias -> penalties -> top-k -> tail-free -> typical -> top-p -> min-p -> xtc -> temp-ext -> softmax -> dist
generate: n_ctx = 32768, n_batch = 2048, n_predict = 50, n_keep = 0
Hi you how are you
goodasdgood/dracarys2-72b-instruct
https://huggingface.co/goodasdgood/dracarys2-72b-instruct/tree/main