distilgpt2-emailgen: V2

colab

Why write the rest of your email when you can generate it?

from transformers import pipeline

model_tag = "postbot/distilgpt2-emailgen-V2"
generator = pipeline(
              'text-generation', 
              model=model_tag, 
            )
            
prompt = """
Hello, 

Following up on the bubblegum shipment."""

result = generator(
    prompt,
    max_length=64,
    do_sample=False,
    early_stopping=True,
) # generate
print(result[0]['generated_text'])

Model description

This model is a fine-tuned version of distilgpt2 on the postbot/multi-emails-100k dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9126

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters (run 1/2)

TODO

Training hyperparameters (run 2/2)

The following hyperparameters were used during training:

  • learning_rate: 0.0006
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
1.9045 1.0 789 2.0006
1.8115 2.0 1578 1.9557
1.8501 3.0 2367 1.9110
1.7376 4.0 3156 1.9126

Framework versions

  • Transformers 4.22.2
  • Pytorch 1.10.0+cu113
  • Datasets 2.5.1
  • Tokenizers 0.12.1

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 24.59
ARC (25-shot) 20.99
HellaSwag (10-shot) 26.78
MMLU (5-shot) 25.53
TruthfulQA (0-shot) 46.51
Winogrande (5-shot) 52.01
GSM8K (5-shot) 0.0
DROP (3-shot) 0.31
Downloads last month
129
GGUF
Model size
121M params
Architecture
gpt2

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .

Dataset used to train mav23/distilgpt2-emailgen-V2-GGUF