license: other
base_model: black-forest-labs/FLUX.1-dev
tags:
- flux
- flux-diffusers
- text-to-image
- diffusers
- simpletuner
- not-for-all-audiences
- lora
- template:sd-lora
- standard
inference: true
widget:
- text: unconditional (blank prompt)
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_0_0.png
- text: >-
An illustration of the beach in Malibu, California with palm trees and
ocean view during sunset. A classic car is parked on an empty street next
to two palm trees near a stop sign. There is a yellow line drawn across
the road leading towards the beach. The sky casts long shadows over the
scene, creating a warm glow that highlights the serene beauty of the
landscape, illustration in classic vibes.
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_1_0.png
maver1chh/jazzy0401
This is a standard PEFT LoRA derived from black-forest-labs/FLUX.1-dev.
The main validation prompt used during training was:
An illustration of the beach in Malibu, California with palm trees and ocean view during sunset. A classic car is parked on an empty street next to two palm trees near a stop sign. There is a yellow line drawn across the road leading towards the beach. The sky casts long shadows over the scene, creating a warm glow that highlights the serene beauty of the landscape, illustration in classic vibes.
Validation settings
- CFG:
3.0
- CFG Rescale:
0.0
- Steps:
20
- Sampler:
FlowMatchEulerDiscreteScheduler
- Seed:
42
- Resolution:
1080x1980
- Skip-layer guidance:
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
Training epochs: 10
Training steps: 10000
Learning rate: 0.0004
- Learning rate schedule: sine
- Warmup steps: 1000
Max grad norm: 1.0
Effective batch size: 1
- Micro-batch size: 1
- Gradient accumulation steps: 1
- Number of GPUs: 1
Gradient checkpointing: True
Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flow_matching_loss=compatible', 'flux_lora_target=all'])
Optimizer: adamw_bf16
Trainable parameter precision: Pure BF16
Caption dropout probability: 10.0%
LoRA Rank: 16
LoRA Alpha: 16.0
LoRA Dropout: 0.1
LoRA initialisation style: default
Datasets
jazz512_0401_3
- Repeats: 10
- Total number of images: 28
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
jazz768_0401_3
- Repeats: 10
- Total number of images: 28
- Total number of aspect buckets: 2
- Resolution: 0.589824 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
jazz1024_0401_3
- Repeats: 10
- Total number of images: 28
- Total number of aspect buckets: 2
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
Inference
import torch
from diffusers import DiffusionPipeline
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'maver1chh/maver1chh/jazzy0401'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
pipeline.load_lora_weights(adapter_id)
prompt = "An illustration of the beach in Malibu, California with palm trees and ocean view during sunset. A classic car is parked on an empty street next to two palm trees near a stop sign. There is a yellow line drawn across the road leading towards the beach. The sky casts long shadows over the scene, creating a warm glow that highlights the serene beauty of the landscape, illustration in classic vibes."
## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=1080,
height=1980,
guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
Exponential Moving Average (EMA)
SimpleTuner generates a safetensors variant of the EMA weights and a pt file.
The safetensors file is intended to be used for inference, and the pt file is for continuing finetuning.
The EMA model may provide a more well-rounded result, but typically will feel undertrained compared to the full model as it is a running decayed average of the model weights.