maxg73872's picture
End of training
735612f verified
metadata
library_name: transformers
base_model: dmis-lab/biobert-v1.1
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: biobert-v1.1-finetuned-medmcqa-2024-11-25-T16-53-56
    results: []

biobert-v1.1-finetuned-medmcqa-2024-11-25-T16-53-56

This model is a fine-tuned version of dmis-lab/biobert-v1.1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7742
  • Accuracy: 0.7381
  • F1: 0.7360

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.000159
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.3837 0.9739 14 0.9841 0.6667 0.6554
1.0861 1.9478 28 0.9140 0.6190 0.6246
0.7803 2.9913 43 0.7742 0.7381 0.7360
0.5603 3.9652 57 0.8236 0.7143 0.7138
0.2753 4.9391 71 0.8765 0.7143 0.7110
0.1985 5.9826 86 0.9808 0.7381 0.7399
0.1119 6.9565 100 0.8757 0.7381 0.7312
0.0814 8.0 115 0.8388 0.7381 0.7519
0.0705 8.9739 129 1.0431 0.7381 0.7519
0.0658 9.7391 140 0.9075 0.7143 0.7220

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3