metadata
library_name: transformers
base_model: dmis-lab/biobert-v1.1
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: biobert-v1.1-finetuned-medmcqa-2024-11-25-T16-53-56
results: []
biobert-v1.1-finetuned-medmcqa-2024-11-25-T16-53-56
This model is a fine-tuned version of dmis-lab/biobert-v1.1 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7742
- Accuracy: 0.7381
- F1: 0.7360
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000159
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
1.3837 | 0.9739 | 14 | 0.9841 | 0.6667 | 0.6554 |
1.0861 | 1.9478 | 28 | 0.9140 | 0.6190 | 0.6246 |
0.7803 | 2.9913 | 43 | 0.7742 | 0.7381 | 0.7360 |
0.5603 | 3.9652 | 57 | 0.8236 | 0.7143 | 0.7138 |
0.2753 | 4.9391 | 71 | 0.8765 | 0.7143 | 0.7110 |
0.1985 | 5.9826 | 86 | 0.9808 | 0.7381 | 0.7399 |
0.1119 | 6.9565 | 100 | 0.8757 | 0.7381 | 0.7312 |
0.0814 | 8.0 | 115 | 0.8388 | 0.7381 | 0.7519 |
0.0705 | 8.9739 | 129 | 1.0431 | 0.7381 | 0.7519 |
0.0658 | 9.7391 | 140 | 0.9075 | 0.7143 | 0.7220 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3