TinyWand-SFT

ํ•œ๊ตญ์–ด ๋ชจ๋ธ ์„ค๋ช…

1.63B, ํ•˜์ฐฎ์€ ํฌ๊ธฐ์˜ SLM์€ ์–ด๋–จ๊นŒ์š”?

๋ชจ๋ธ ์†Œ๊ฐœ

TinyWand-SFT๋Š” 1.63B์˜ SLM ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. ์ด ๋ชจ๋ธ์€ 1.63B๋ผ๋Š” ์ž‘์€ ํฌ๊ธฐ๋ฅผ ๊ฐ€์ง์œผ๋กœ์จ ์†Œํ˜•๊ธฐ๊ธฐ์—์„œ ๊ตฌ๋™๋˜๊ฑฐ๋‚˜ ํฐ toks/s๋ฅผ ๊ฐ€์งˆ ์ˆ˜ ์žˆ์Œ๊ณผ ๋™์‹œ์— ๊ฐ•๋ ฅํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.

๋ชจ๋ธ ๋ผ์ด์„ผ์Šค

apache-2.0

๋ชจ๋ธ ์„ฑ๋Šฅ

TBD

ํ•œ๊ณ„

์ž‘์€ ํฌ๊ธฐ๋กœ ์ธํ•˜์—ฌ Insturct ํŒŒ์ธํŠœ๋‹ ํ›„ ํ•ด๋‹น ํ…œํ”Œ๋ฆฟ์ด ์•„๋‹๊ฒฝ์šฐ ์ œ๋Œ€๋กœ ์‘๋‹ตํ•˜์ง€ ์•Š๋Š” ๋ชจ์Šต์„ ๋ณด์ž„. ํŠน์ • task์— ์‚ฌ์šฉํ•œ๋‹ค๋ฉด ํ”„๋กฌํ”„ํŒ…๋ณด๋‹ค๋Š” ํŒŒ์ธํŠœ๋‹์„ ๊ถŒ์žฅํ•จ.

๊ฐ™์€ ์ด์œ ๋กœ ์ผ๋ฐ˜์ ์ธ ๋ฒค์น˜๋งˆํฌ์—์„œ๋„ ์ƒ๋‹นํžˆ ๋‚ฎ์€ ์ ์ˆ˜๋ฅผ ๋ณด์ž„.

ํ•™์Šต ๊ณผ์ •

TBD

์‚ฌ์šฉ ์•ˆ๋‚ด

์ถ”๋ก ์— ํ•„์š”ํ•œ VRAM

์–‘์žํ™” ์ž…๋ ฅ ํ† ํฐ ์ˆ˜ ์ถœ๋ ฅ ํ† ํฐ ์ˆ˜ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰
bf16(base) 64 256 3,888 MiB
q4_K_M 64 256 1,788 MiB

ํ”„๋กฌํ”„ํŠธ ํ…œํ”Œ๋ฆฟ

๋ณธ ๋ชจ๋ธ์€ Alpaca ํ”„๋กฌํ”„ํŠธ ํ…œํ”Œ๋ฆฟ์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.

ํ•ด๋‹น ํ…œํ”Œ๋ฆฟ์€ apply_chat_template()๋ฅผ ํ†ตํ•ด ํ—ˆ๊น…ํŽ˜์ด์Šค ํ…œํ”Œ๋ฆฟ์—์„œ ํ™•์ธ ํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์•„๋ž˜ ํŒŒ์ด์ฌ ์ฝ”๋“œ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ชจ๋ธ์„ ๋กœ๋“œ ๋ฐ ์‚ฌ์šฉ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. transformers, torch๊ฐ€ ์‚ฌ์ „ ์„ค์น˜๋˜์–ด์•ผํ•จ

from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # nvidia ๊ทธ๋ž˜ํ”ฝ์นด๋“œ ๊ธฐ์ค€

tokenizer = AutoTokenizer.from_pretrained("maywell/TinyWand-SFT")
model = AutoModelForCausalLM.from_pretrained(
    "maywell/TinyWand-SFT",
    device_map="auto",
    torch_dtype=torch.bfloat16, # ์‚ฌ์šฉํ•˜๋Š” ์žฅ๋น„๊ฐ€ bfloat16์„ ์ง€์›ํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ torch.float16์œผ๋กœ ๋ฐ”๊ฟ”์ฃผ์„ธ์š”.
)

messages = [
    {"role": "system", "content": "Below is an instruction that describes a task. Write a response that appropriately completes the request."}, # ๋น„์šธ ๊ฒฝ์šฐ์—๋„ ๋™์ผํ•˜๊ฒŒ ์ ์šฉ ๋จ.
    {"role": "user", "content": "์–ธ์–ด๋ชจ๋ธ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๊ฐ€ ์ž‘์œผ๋ฉด ์–ด๋–ค ์ด์ ์ด ์žˆ์–ด?"},
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
Downloads last month
1,152
Safetensors
Model size
1.63B params
Tensor type
BF16
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for maywell/TinyWand-SFT

Quantizations
1 model