output / README.md
mdeputy's picture
best_model.pt
2347596 verified
---
library_name: transformers
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: output
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# output
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Model Preparation Time: 0.0007
- Accuracy: 0.9944
- F1: 0.9917
- Iou: 0.9889
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Accuracy | F1 | Iou |
|:-------------:|:-----:|:----:|:---------------:|:----------------------:|:--------:|:------:|:------:|
| No log | 1.0 | 1 | 0.5669 | 0.0007 | 0.9944 | 0.9917 | 0.9889 |
| No log | 2.0 | 2 | nan | 0.0007 | 0.9944 | 0.9917 | 0.9889 |
| No log | 3.0 | 3 | nan | 0.0007 | 0.9944 | 0.9917 | 0.9889 |
| No log | 4.0 | 4 | nan | 0.0007 | 0.9944 | 0.9917 | 0.9889 |
| No log | 5.0 | 5 | nan | 0.0007 | 0.9944 | 0.9917 | 0.9889 |
| No log | 6.0 | 6 | nan | 0.0007 | 0.9944 | 0.9917 | 0.9889 |
| No log | 7.0 | 7 | nan | 0.0007 | 0.9944 | 0.9917 | 0.9889 |
| No log | 8.0 | 8 | nan | 0.0007 | 0.9944 | 0.9917 | 0.9889 |
| No log | 9.0 | 9 | nan | 0.0007 | 0.9944 | 0.9917 | 0.9889 |
| No log | 10.0 | 10 | nan | 0.0007 | 0.9944 | 0.9917 | 0.9889 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1
- Datasets 2.21.0
- Tokenizers 0.20.3