YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Indonesian BERT Base Sentiment Classifier is a sentiment-text-classification model. The model was originally the pre-trained IndoBERT Base Model (phase1 - uncased) model using Prosa sentiment dataset

How to Use

As Text Classifier

from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForSequenceClassification

pretrained= "mdhugol/indonesia-bert-sentiment-classification"

model = AutoModelForSequenceClassification.from_pretrained(pretrained)
tokenizer = AutoTokenizer.from_pretrained(pretrained)

sentiment_analysis = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)

label_index = {'LABEL_0': 'positive', 'LABEL_1': 'neutral', 'LABEL_2': 'negative'}

pos_text = "Sangat bahagia hari ini"
neg_text = "Dasar anak sialan!! Kurang ajar!!"

result = sentiment_analysis(pos_text)
status = label_index[result[0]['label']]
score = result[0]['score']
print(f'Text: {pos_text} | Label : {status} ({score * 100:.3f}%)')

result = sentiment_analysis(neg_text)
status = label_index[result[0]['label']]
score = result[0]['score']
print(f'Text: {neg_text} | Label : {status} ({score * 100:.3f}%)')
Downloads last month
10,564
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mdhugol/indonesia-bert-sentiment-classification

Finetunes
5 models

Spaces using mdhugol/indonesia-bert-sentiment-classification 3