YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Indonesian BERT Base Sentiment Classifier is a sentiment-text-classification model. The model was originally the pre-trained IndoBERT Base Model (phase1 - uncased) model using Prosa sentiment dataset
How to Use
As Text Classifier
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForSequenceClassification
pretrained= "mdhugol/indonesia-bert-sentiment-classification"
model = AutoModelForSequenceClassification.from_pretrained(pretrained)
tokenizer = AutoTokenizer.from_pretrained(pretrained)
sentiment_analysis = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
label_index = {'LABEL_0': 'positive', 'LABEL_1': 'neutral', 'LABEL_2': 'negative'}
pos_text = "Sangat bahagia hari ini"
neg_text = "Dasar anak sialan!! Kurang ajar!!"
result = sentiment_analysis(pos_text)
status = label_index[result[0]['label']]
score = result[0]['score']
print(f'Text: {pos_text} | Label : {status} ({score * 100:.3f}%)')
result = sentiment_analysis(neg_text)
status = label_index[result[0]['label']]
score = result[0]['score']
print(f'Text: {neg_text} | Label : {status} ({score * 100:.3f}%)')
- Downloads last month
- 10,564
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.