|
--- |
|
license: other |
|
license_name: tongyi-qwen |
|
license_link: >- |
|
https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT |
|
pipeline_tag: image-text-to-text |
|
tags: |
|
- multimodal |
|
library_name: transformers |
|
base_model: |
|
- Qwen/Qwen2-0.5B |
|
|
|
--- |
|
# SliMM: A Simple LMM baseline with Dynamic Visual Resolution π |
|
|
|
[[π Project Page](https://deepstack-vl.github.io/)] |
|
[[π Paper](https://arxiv.org/abs/2406.04334)] |
|
|
|
|
|
## π₯ Latest Update |
|
* [2024/12/12] Our [first version](https://huggingface.co/collections/menglc/slimm-675bd737c2965037a6b52d05) is out! We release a strong 0.5B baseline model [SliMM-Qwen2-0.5B](https://huggingface.co/menglc/SliMM-Qwen2-0.5B) and advanced baseline [SliMM-DeepStackM-Qwen2-0.5B](https://huggingface.co/menglc/SliMM-DeepStackM-Qwen2-0.5B). We release a strong 2B model [SliMM-DeepStackE-Qwen2VL-2B](https://huggingface.co/menglc/SliMM-DeepStackE-Qwen2VL-2B) continous fine-tuned from Qwen2VL-2B, which save 4x fewer visual tokens for LLM with. Training scrips are avaliable [here]()! |
|
|
|
|
|
|
|
## Introduction |
|
|
|
* **Advanced Techniques**: We incorporate native dynamic resolution, as used in Qwen2-VL, for high-resolution visual encoding, replacing the previous cumbersome Multi-Crop/AnyRes methods. Moreover, building on DeepStack [1], we maintain the same principle of interting stacked visual tokens into **multiple layers** of the LLMs. We propose two enhanced versions for native resolution vision encoding: DeepStack-MidLayers, which improves performance with negligible additional FLOPs by stacking multi-level visual tokens from the middle layers of the vision encoder, and DeepStack-Efficient, which reduces visual token usage while maintaining high performance. |
|
* **Seamless Integration**: Easily use LLaVA-format training data in our codebase. |
|
* **Training Efficiency**: Fine-tuning on the 748K LLaVA-Next-DATA for on epoch takes only 4 hours for 0.5/2B Qwen2 and 6 hours for a 7B on 8xH100, which is more than 2x faster than LLaVA-OV codebase. |
|
* **Strong Baseline Model for Small LMMs**: We establish a robust baseline using widely-used public available datasets, including LCS-758K (Stage-1), LLaVA-OV-MidStage (Stage 1.5), and LLaVA-OneVision SI (Stage 2). |
|
|
|
[1] *DeepStack: Deeply Stacking Visual Tokens is Surprisingly Simple and Effective for LMMs* |
|
|
|
## Quick Start |
|
|
|
|
|
```bash |
|
git clone https://github.com/MengLcool/SliMM.git |
|
cd SliMM |
|
pip install -e . |
|
``` |
|
|
|
```Python |
|
# this is very similar to qwen2-vl |
|
from slimm.model.processor import SliMMQwen2VLProcessor |
|
from slimm.model.slimm import SliMMForConditionalGeneration |
|
from slimm.model.utils_vl import process_vision_info |
|
|
|
model_path = "menglc/SliMM-Qwen2-0.5B" |
|
|
|
model = SliMMForConditionalGeneration.from_pretrained( |
|
model_path, torch_dtype="auto", device_map="auto" |
|
) |
|
|
|
processor = SliMMQwen2VLProcessor.from_pretrained(model_path) |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "image", |
|
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", |
|
}, |
|
{"type": "text", "text": "Describe this image."}, |
|
], |
|
} |
|
] |
|
|
|
# Preparation for inference |
|
text = processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
inputs = inputs.to("cuda") |
|
|
|
# Inference: Generation of the output |
|
generated_ids = model.generate(**inputs, max_new_tokens=128) |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
print(output_text) |
|
``` |
|
|
|
## Benchmarks |
|
|
|
| Benchmark | MMMU (Val) | ChartQA (Test) | AI2D (test) | DocVQA (val) |
|
|-------------------------|------------|----------------|-------------|-------------| |
|
|NanoLLaVA-Qwen1.5-0.5B |28.6 | NA |NA |NA | |
|
|OmniVLM v1 |39.9 | 59.2 |NA |NA | |
|
|OmniVLM v2 |**40.0** | 61.9 |NA |NA | |
|
|LLaVA-OV-SI-Qwen2.5-0.5B |31.2 | 61.0 |54.2 |75.0 | |
|
|LLaVA-OV-Qwen2.5-0.5B |31.4 | 61.4 |57.1 |73.7 | |
|
|SliMM-Qwen2-0.5B |30.6 | 64.2 |58.4 |77.0 | |
|
|SliMM-DeepStackM-Qwen2-0.5B|**31.4** | **65.2** |**60.3** |**77.7** | |
|
|
|
## π Citation |
|
If you find our work helpful, please consider citing our paper :paperclip: and starring our repo :star2: : |
|
|
|
``` |
|
@inproceedings{meng2024deepstack, |
|
title={DeepStack: Deeply Stacking Visual Tokens is Surprisingly Simple and Effective for LMMs}, |
|
author={Meng, Lingchen and Yang, Jianwei and Tian, Rui and Dai, Xiyang and Wu, Zuxuan and Gao, Jianfeng and Jiang, Yu-Gang}, |
|
booktitle={NeurIPS}, |
|
year={2024} |
|
} |
|
``` |