Visualize in Weights & Biases

output

This model is a fine-tuned version of facebook/m2m100_418M on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2678
  • Precision: 0.9166
  • Recall: 0.9166
  • F1 score: 0.9164
  • Bleu: 28.7416
  • Meteor: 0.3773
  • Ter: 71.3529
  • Chrf: 50.0450

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 800
  • training_steps: 6000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 score Bleu Meteor Ter Chrf
6.3055 0.7752 200 5.3503 0.8494 0.8425 0.8448 2.8881 0.1997 335.5156 20.8502
3.2698 1.5504 400 2.2718 0.9058 0.8907 0.8978 14.8848 0.3054 79.7919 39.0690
0.575 2.3256 600 0.4124 0.8988 0.9048 0.9014 13.4928 0.3267 90.0851 42.4825
0.3216 3.1008 800 0.3123 0.9062 0.9044 0.9050 17.0882 0.3180 80.1514 42.4666
0.2668 3.8760 1000 0.2778 0.9085 0.9021 0.9050 18.7200 0.3327 76.5374 43.3363
0.2141 4.6512 1200 0.2632 0.9112 0.9045 0.9075 19.1642 0.3293 75.0615 42.6765
0.161 5.4264 1400 0.2564 0.9130 0.9046 0.9085 21.6492 0.3430 72.2233 45.1452
0.1483 6.2016 1600 0.2493 0.9162 0.9088 0.9122 22.5441 0.3454 72.3746 45.8491
0.1314 6.9767 1800 0.2485 0.9151 0.9127 0.9136 24.5229 0.3622 73.7938 46.8310
0.1095 7.7519 2000 0.2467 0.9203 0.9099 0.9148 26.3288 0.3681 69.8392 47.8396
0.0883 8.5271 2200 0.2531 0.9181 0.9126 0.9151 26.4899 0.3657 70.3879 48.2937
0.0676 9.3023 2400 0.2560 0.9209 0.9120 0.9161 27.8690 0.3734 68.4201 49.1044
0.0693 10.0775 2600 0.2610 0.9162 0.9156 0.9156 27.6786 0.3756 71.6556 49.3039
0.0603 10.8527 2800 0.2624 0.9180 0.9156 0.9166 29.1587 0.3849 70.4257 50.4754
0.0468 11.6279 3000 0.2678 0.9166 0.9166 0.9164 28.7416 0.3773 71.3529 50.0450

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
484M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for menuka-13/output

Finetuned
(61)
this model