MOE-SWE-DAN-NO-CODE / README.md
birgermoell's picture
Upload folder using huggingface_hub
623033b verified
|
raw
history blame
2.26 kB
---
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- RJuro/munin-neuralbeagle-7b
- timpal0l/BeagleCatMunin
- birgermoell/Munin-NeuralBeagle-NorskGPT
- teknium/OpenHermes-2.5-Mistral-7B
base_model:
- RJuro/munin-neuralbeagle-7b
- timpal0l/BeagleCatMunin
- birgermoell/Munin-NeuralBeagle-NorskGPT
- teknium/OpenHermes-2.5-Mistral-7B
---
# MOE-SWE-DAN-NO-CODE
MOE-SWE-DAN-NO-CODE is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [RJuro/munin-neuralbeagle-7b](https://huggingface.co/RJuro/munin-neuralbeagle-7b)
* [timpal0l/BeagleCatMunin](https://huggingface.co/timpal0l/BeagleCatMunin)
* [birgermoell/Munin-NeuralBeagle-NorskGPT](https://huggingface.co/birgermoell/Munin-NeuralBeagle-NorskGPT)
* [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B)
## 🧩 Configuration
```yaml
base_model: RJuro/munin-neuralbeagle-7b
dtype: float16
gate_mode: cheap_embed
experts:
- source_model: RJuro/munin-neuralbeagle-7b
positive_prompts: ["You are a helpful Danish assistant."]
- source_model: timpal0l/BeagleCatMunin
positive_prompts: ["You are a helpful Swedish assistant."]
- source_model: birgermoell/Munin-NeuralBeagle-NorskGPT
positive_prompts: ["You are a helpful Norwegian assistant."]
- source_model: teknium/OpenHermes-2.5-Mistral-7B
positive_prompts: ["You are a helpful coding assistant."]
```
## 💻 Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "merge-crew/MOE-SWE-DAN-NO-CODE"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```