|
--- |
|
license: apache-2.0 |
|
tags: |
|
- moe |
|
- frankenmoe |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- RJuro/munin-neuralbeagle-7b |
|
- timpal0l/BeagleCatMunin |
|
- birgermoell/Munin-NeuralBeagle-NorskGPT |
|
- teknium/OpenHermes-2.5-Mistral-7B |
|
base_model: |
|
- RJuro/munin-neuralbeagle-7b |
|
- timpal0l/BeagleCatMunin |
|
- birgermoell/Munin-NeuralBeagle-NorskGPT |
|
- teknium/OpenHermes-2.5-Mistral-7B |
|
--- |
|
|
|
# MOE-SWE-DAN-NO-CODE |
|
|
|
MOE-SWE-DAN-NO-CODE is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [RJuro/munin-neuralbeagle-7b](https://huggingface.co/RJuro/munin-neuralbeagle-7b) |
|
* [timpal0l/BeagleCatMunin](https://huggingface.co/timpal0l/BeagleCatMunin) |
|
* [birgermoell/Munin-NeuralBeagle-NorskGPT](https://huggingface.co/birgermoell/Munin-NeuralBeagle-NorskGPT) |
|
* [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
base_model: RJuro/munin-neuralbeagle-7b |
|
dtype: float16 |
|
gate_mode: cheap_embed |
|
experts: |
|
- source_model: RJuro/munin-neuralbeagle-7b |
|
positive_prompts: ["You are a helpful Danish assistant."] |
|
- source_model: timpal0l/BeagleCatMunin |
|
positive_prompts: ["You are a helpful Swedish assistant."] |
|
- source_model: birgermoell/Munin-NeuralBeagle-NorskGPT |
|
positive_prompts: ["You are a helpful Norwegian assistant."] |
|
- source_model: teknium/OpenHermes-2.5-Mistral-7B |
|
positive_prompts: ["You are a helpful coding assistant."] |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers bitsandbytes accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "merge-crew/MOE-SWE-DAN-NO-CODE" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, |
|
) |
|
|
|
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] |
|
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |