|
--- |
|
base_model: microsoft/mpnet-base |
|
datasets: |
|
- mertcobanov/all-nli-triplets-turkish |
|
language: |
|
- en |
|
- tr |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:120781 |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: Bir köpek sahibi, evcil hayvanıyla birlikte koşuyor ve evcil hayvan |
|
bir parkurda engellerden kaçınıyor. |
|
sentences: |
|
- Bazı bitkilerin önünde mavi bir kano. |
|
- Bir adam köpeğinin yanında koşuyor. |
|
- Adam bir kediyle birlikte. |
|
- source_sentence: Parlamenter bölümünün patronunun ev hizmetiyle bağlantılı bir politikacı, |
|
0-609-3459812 numaralı cep telefonuna sahip ve mizah anlayışının olmamasıyla tanınıyor, |
|
'Hayran' adlı birinden gelen 'En iyi kürek dilekleri' mesajını pek iyi karşılamadı. |
|
sentences: |
|
- Doktor Perennial, kötü niyetli çavuş uyandığında ayakta duruyordu. |
|
- Politikacı, patronunun ev hizmetini aradığında, bir 'hayran'dan gelen bir mesaja |
|
pek hoş karşılamadı. |
|
- Mesajı aldığı için o kadar minnettardı ki, gönderen kişiye bir demet çiçek gönderdi. |
|
- source_sentence: Bankanın kasalarında. |
|
sentences: |
|
- Ayakta duran bir insan |
|
- Banka kasasında. |
|
- Bankadaki kasa. |
|
- source_sentence: Bir grup Asyalı erkek, birlikte bir yemek yedikten sonra büyük |
|
bir masanın etrafında poz veriyor. |
|
sentences: |
|
- Bir grup Asyalı erkek birlikte bir yemek yedi. |
|
- Pazarlar, kaplıcalar ve kayak pistleri burada bulunan diğer cazibe merkezlerinden |
|
bazılarını oluşturuyor. |
|
- Bir grup Asyalı erkek futbol oynuyor. |
|
- source_sentence: Böyle şeyler görmek ve eğer yapabileceğiniz en küçük bir şey varsa, |
|
bu yardımcı olur. |
|
sentences: |
|
- Böyle bir şeyi gözlemlemek ve yapıp yapamayacağınızı bilmek için. |
|
- Adamın gömleği, kot pantolonundan farklı bir renkte. |
|
- Böyle bir şeyi görmek kötü, eğer yapabiliyorsanız buna hiç katkıda bulunmayın. |
|
model-index: |
|
- name: SentenceTransformer based on microsoft/mpnet-base |
|
results: |
|
- task: |
|
type: triplet |
|
name: Triplet |
|
dataset: |
|
name: all nli dev turkish |
|
type: all-nli-dev-turkish |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.7764277035236938 |
|
name: Cosine Accuracy |
|
- task: |
|
type: triplet |
|
name: Triplet |
|
dataset: |
|
name: all nli test turkish |
|
type: all-nli-test-turkish |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.7740959297927069 |
|
name: Cosine Accuracy |
|
--- |
|
|
|
# SentenceTransformer based on microsoft/mpnet-base |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [all-nli-triplets-turkish](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [all-nli-triplets-turkish](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish) |
|
- **Languages:** en, tr |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("mertcobanov/mpnet-base-all-nli-triplet-turkish-v4-dgx") |
|
# Run inference |
|
sentences = [ |
|
'Böyle şeyler görmek ve eğer yapabileceğiniz en küçük bir şey varsa, bu yardımcı olur.', |
|
'Böyle bir şeyi gözlemlemek ve yapıp yapamayacağınızı bilmek için.', |
|
'Böyle bir şeyi görmek kötü, eğer yapabiliyorsanız buna hiç katkıda bulunmayın.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Triplet |
|
|
|
* Datasets: `all-nli-dev-turkish` and `all-nli-test-turkish` |
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | all-nli-dev-turkish | all-nli-test-turkish | |
|
|:--------------------|:--------------------|:---------------------| |
|
| **cosine_accuracy** | **0.7764** | **0.7741** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### all-nli-triplets-turkish |
|
|
|
* Dataset: [all-nli-triplets-turkish](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish) at [13554fd](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish/tree/13554fdb2675c44f84a8dccc1afb51cee8a1e4ba) |
|
* Size: 120,781 training samples |
|
* Columns: <code>anchor_translated</code>, <code>positive_translated</code>, and <code>negative_translated</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor_translated | positive_translated | negative_translated | |
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 3 tokens</li><li>mean: 11.77 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 11.1 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 12.41 tokens</li><li>max: 44 tokens</li></ul> | |
|
* Samples: |
|
| anchor_translated | positive_translated | negative_translated | |
|
|:---------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:----------------------------------------------------------------------------| |
|
| <code>Bir kişi, bir atın üzerinde, bozulmuş bir uçağın üzerinden atlıyor.</code> | <code>Bir kişi dışarıda, bir atın üzerinde.</code> | <code>Bir kişi bir lokantada omlet siparişi veriyor.</code> | |
|
| <code>Bir Küçük Lig takımı, bir oyuncunun bir üsse kayarak girmeye çalıştığı sırada onu yakalamaya çalışıyor.</code> | <code>Bir takım bir koşucuyu dışarı atmaya çalışıyor.</code> | <code>Bir takım Satürn'de beyzbol oynuyor.</code> | |
|
| <code>Kadın beyaz giyiyor.</code> | <code>Beyaz bir ceket giymiş bir kadın bir tekerlekli sandalyeyi itiyor.</code> | <code>Siyah giyinmiş bir adam, siyah giyinmiş bir kadını kucaklıyor.</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### all-nli-triplets-turkish |
|
|
|
* Dataset: [all-nli-triplets-turkish](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish) at [13554fd](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish/tree/13554fdb2675c44f84a8dccc1afb51cee8a1e4ba) |
|
* Size: 6,584 evaluation samples |
|
* Columns: <code>anchor_translated</code>, <code>positive_translated</code>, and <code>negative_translated</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor_translated | positive_translated | negative_translated | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 2 tokens</li><li>mean: 22.3 tokens</li><li>max: 135 tokens</li></ul> | <ul><li>min: 1 tokens</li><li>mean: 10.92 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 10.81 tokens</li><li>max: 34 tokens</li></ul> | |
|
* Samples: |
|
| anchor_translated | positive_translated | negative_translated | |
|
|:--------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------| |
|
| <code>Ayrıca, bu özel tüketim vergileri, diğer vergiler gibi, hükümetin ödeme zorunluluğunu sağlama yetkisini kullanarak belirlenir.</code> | <code>Hükümetin ödeme zorlaması, özel tüketim vergilerinin nasıl hesaplandığını belirler.</code> | <code>Özel tüketim vergileri genel kuralın bir istisnasıdır ve aslında GSYİH payına dayalı olarak belirlenir.</code> | |
|
| <code>Gri bir sweatshirt giymiş bir sanatçı, canlı renklerde bir kasaba tablosu üzerinde çalışıyor.</code> | <code>Bir ressam gri giysiler içinde bir kasabanın resmini yapıyor.</code> | <code>Bir kişi bir beyzbol sopası tutuyor ve gelen bir atış için planda bekliyor.</code> | |
|
| <code>İmkansız.</code> | <code>Yapılamaz.</code> | <code>Tamamen mümkün.</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 10 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 10 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | Validation Loss | all-nli-dev-turkish_cosine_accuracy | all-nli-test-turkish_cosine_accuracy | |
|
|:------:|:----:|:-------------:|:---------------:|:-----------------------------------:|:------------------------------------:| |
|
| 0 | 0 | - | - | 0.5729 | - | |
|
| 0.2119 | 100 | 6.6103 | 4.5154 | 0.6970 | - | |
|
| 0.4237 | 200 | 5.1602 | 3.7328 | 0.7195 | - | |
|
| 0.6356 | 300 | 4.4533 | 3.3389 | 0.7372 | - | |
|
| 0.8475 | 400 | 3.4465 | 3.6044 | 0.7187 | - | |
|
| 1.0572 | 500 | 2.6977 | 3.3043 | 0.7418 | - | |
|
| 1.2691 | 600 | 3.8142 | 3.2066 | 0.7512 | - | |
|
| 1.4809 | 700 | 3.4333 | 3.0716 | 0.7508 | - | |
|
| 1.6928 | 800 | 3.1488 | 2.9590 | 0.7553 | - | |
|
| 1.9047 | 900 | 1.8677 | 3.2416 | 0.7442 | - | |
|
| 2.1144 | 1000 | 2.2034 | 2.9323 | 0.7634 | - | |
|
| 2.3263 | 1100 | 2.9834 | 2.9406 | 0.7669 | - | |
|
| 2.5381 | 1200 | 2.6785 | 2.8607 | 0.7672 | - | |
|
| 2.75 | 1300 | 2.5096 | 2.8939 | 0.7684 | - | |
|
| 2.9619 | 1400 | 0.876 | 3.2539 | 0.7416 | - | |
|
| 3.1716 | 1500 | 2.3355 | 2.7503 | 0.7758 | - | |
|
| 3.3835 | 1600 | 2.4666 | 2.7920 | 0.7707 | - | |
|
| 3.5953 | 1700 | 2.2691 | 2.7860 | 0.7729 | - | |
|
| 3.8072 | 1800 | 1.8024 | 2.9899 | 0.7571 | - | |
|
| 4.0169 | 1900 | 0.6443 | 3.0993 | 0.7456 | - | |
|
| 4.2288 | 2000 | 2.3976 | 2.7792 | 0.7811 | - | |
|
| 4.4407 | 2100 | 2.1145 | 2.7968 | 0.7728 | - | |
|
| 4.6525 | 2200 | 1.9788 | 2.7243 | 0.7751 | - | |
|
| 4.8644 | 2300 | 1.1676 | 2.9885 | 0.7567 | - | |
|
| 5.0742 | 2400 | 1.0009 | 2.7374 | 0.7767 | - | |
|
| 5.2860 | 2500 | 2.1276 | 2.7822 | 0.7767 | - | |
|
| 5.4979 | 2600 | 1.8459 | 2.7822 | 0.7760 | - | |
|
| 5.7097 | 2700 | 1.7659 | 2.7322 | 0.7766 | - | |
|
| 5.9216 | 2800 | 0.5916 | 3.0191 | 0.7596 | - | |
|
| 6.1314 | 2900 | 1.3908 | 2.6973 | 0.7772 | - | |
|
| 6.3432 | 3000 | 1.9257 | 2.7585 | 0.7763 | - | |
|
| 6.5551 | 3100 | 1.6558 | 2.7350 | 0.7760 | - | |
|
| 6.7669 | 3200 | 1.5368 | 2.7903 | 0.7722 | - | |
|
| 6.9788 | 3300 | 0.1968 | 3.0849 | 0.7479 | - | |
|
| 7.1886 | 3400 | 1.8044 | 2.6626 | 0.7825 | - | |
|
| 7.4004 | 3500 | 1.7048 | 2.7380 | 0.7790 | - | |
|
| 7.6123 | 3600 | 1.5666 | 2.7250 | 0.7796 | - | |
|
| 7.8242 | 3700 | 1.0954 | 2.9620 | 0.7629 | - | |
|
| 8.0339 | 3800 | 0.487 | 2.8900 | 0.7641 | - | |
|
| 8.2458 | 3900 | 1.8398 | 2.7186 | 0.7796 | - | |
|
| 8.4576 | 4000 | 1.5659 | 2.7259 | 0.7778 | - | |
|
| 8.6695 | 4100 | 1.4825 | 2.7007 | 0.7760 | - | |
|
| 8.8814 | 4200 | 0.7019 | 2.9050 | 0.7675 | - | |
|
| 9.0911 | 4300 | 0.9278 | 2.7606 | 0.7731 | - | |
|
| 9.3030 | 4400 | 1.766 | 2.6978 | 0.7787 | - | |
|
| 9.5148 | 4500 | 1.4699 | 2.7114 | 0.7801 | - | |
|
| 9.7267 | 4600 | 1.4647 | 2.7096 | 0.7799 | - | |
|
| 9.9386 | 4700 | 0.3321 | 2.7418 | 0.7764 | - | |
|
| 9.9809 | 4720 | - | - | - | 0.7741 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.14 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.46.3 |
|
- PyTorch: 2.4.0 |
|
- Accelerate: 0.27.2 |
|
- Datasets: 3.1.0 |
|
- Tokenizers: 0.20.3 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |