MaLLaM π
Collection
Pretrain from scratch 4096 context length on 90B tokens Malaysian text, https://huggingface.co/papers/2401.14680
β’
10 items
β’
Updated
β’
13
Pretrain from scratch 1.1B parameters using Mistral architecture on 90B Malaysian text tokens.
README at https://github.com/mesolitica/malaya/tree/5.1/pretrained-model/mistral
WandB, https://wandb.ai/mesolitica/pretrain-mistral-1.1b?workspace=user-husein-mesolitica
WandB report, https://wandb.ai/mesolitica/pretrain-mistral-3b/reports/Pretrain-Larger-Malaysian-Mistral--Vmlldzo2MDkyOTgz
Technical report, https://github.com/mesolitica/malaya/wiki/MaLLaM-%F0%9F%8C%99-Malaysia-Large-Language-Model
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch
TORCH_DTYPE = 'bfloat16'
nf4_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type='nf4',
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=getattr(torch, TORCH_DTYPE)
)
tokenizer = AutoTokenizer.from_pretrained('mesolitica/mallam-1.1B-4096')
model = AutoModelForCausalLM.from_pretrained(
'mesolitica/mallam-1.1B-4096',
use_flash_attention_2 = True,
quantization_config = nf4_config
)
prompt = '<s>nama saya'
inputs = tokenizer([prompt], return_tensors='pt', add_special_tokens=False).to('cuda')
generate_kwargs = dict(
inputs,
max_new_tokens=512,
top_p=0.95,
top_k=50,
temperature=0.9,
do_sample=True,
num_beams=1,
repetition_penalty=1.05,
)
r = model.generate(**generate_kwargs)