BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("mezeidragos-lateral/bge-base-financial-matryoshka")
# Run inference
sentences = [
"As a REIT, future repatriation of incremental undistributed earnings of the company's foreign subsidiaries will not be subject to federal or state income tax, with the exception of foreign withholding taxes.",
'What tax implications apply to the future repatriation of incremental undistributed earnings by a REIT from its foreign subsidiaries?',
'What was the accrued liability for product recall related matters as of the end of the fiscal year on June 30, 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.7129 | 0.7214 | 0.7043 | 0.6971 | 0.6743 |
cosine_accuracy@3 | 0.8429 | 0.8471 | 0.8343 | 0.8143 | 0.7943 |
cosine_accuracy@5 | 0.88 | 0.8757 | 0.8771 | 0.8557 | 0.8257 |
cosine_accuracy@10 | 0.92 | 0.9186 | 0.9157 | 0.9029 | 0.8743 |
cosine_precision@1 | 0.7129 | 0.7214 | 0.7043 | 0.6971 | 0.6743 |
cosine_precision@3 | 0.281 | 0.2824 | 0.2781 | 0.2714 | 0.2648 |
cosine_precision@5 | 0.176 | 0.1751 | 0.1754 | 0.1711 | 0.1651 |
cosine_precision@10 | 0.092 | 0.0919 | 0.0916 | 0.0903 | 0.0874 |
cosine_recall@1 | 0.7129 | 0.7214 | 0.7043 | 0.6971 | 0.6743 |
cosine_recall@3 | 0.8429 | 0.8471 | 0.8343 | 0.8143 | 0.7943 |
cosine_recall@5 | 0.88 | 0.8757 | 0.8771 | 0.8557 | 0.8257 |
cosine_recall@10 | 0.92 | 0.9186 | 0.9157 | 0.9029 | 0.8743 |
cosine_ndcg@10 | 0.8194 | 0.8223 | 0.8132 | 0.7997 | 0.7743 |
cosine_mrr@10 | 0.7869 | 0.7912 | 0.78 | 0.7667 | 0.7424 |
cosine_map@100 | 0.7892 | 0.7936 | 0.7823 | 0.7701 | 0.7463 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 4 tokens
- mean: 44.62 tokens
- max: 301 tokens
- min: 10 tokens
- mean: 20.66 tokens
- max: 45 tokens
- Samples:
positive anchor We provide transaction processing services (primarily authorization, clearing and settlement) to our financial institution and merchant clients through VisaNet, our proprietary advanced transaction processing network.
What are the primary transaction processing services provided by Visa through VisaNet?
Information about legal proceedings is included in Item 8 of the Annual Report on Form 10-K, as referenced in Item 3.
What item in the Annual Report on Form 10-K provides information about legal proceedings?
Investing activities used cash of $3.0 billion in 2022.
What was the net cash used by investing activities in 2022?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Trueload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.5626 | - | - | - | - | - |
1.0 | 13 | - | 0.8071 | 0.8040 | 0.7933 | 0.7781 | 0.7478 |
1.5685 | 20 | 0.6111 | - | - | - | - | - |
2.0 | 26 | - | 0.8173 | 0.8192 | 0.8111 | 0.7961 | 0.7661 |
2.3249 | 30 | 0.4333 | - | - | - | - | - |
3.0 | 39 | - | 0.8193 | 0.8211 | 0.8127 | 0.7996 | 0.7729 |
3.0812 | 40 | 0.3465 | - | - | - | - | - |
3.731 | 48 | - | 0.8194 | 0.8223 | 0.8132 | 0.7997 | 0.7743 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.8
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0
- PyTorch: 2.2.2
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for mezeidragos-lateral/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.713
- Cosine Accuracy@3 on dim 768self-reported0.843
- Cosine Accuracy@5 on dim 768self-reported0.880
- Cosine Accuracy@10 on dim 768self-reported0.920
- Cosine Precision@1 on dim 768self-reported0.713
- Cosine Precision@3 on dim 768self-reported0.281
- Cosine Precision@5 on dim 768self-reported0.176
- Cosine Precision@10 on dim 768self-reported0.092
- Cosine Recall@1 on dim 768self-reported0.713
- Cosine Recall@3 on dim 768self-reported0.843