See axolotl config
axolotl version: 0.5.3.dev38+g5726141c
base_model: meta-llama/Llama-3.2-3B-Instruct
datasets:
- path: axolotl_format_data_llama.json
type: input_output
dataset_prepared_path: last_run_prepared
output_dir: ./models/llama
sequence_length: 4096
wandb_project: agent-v0
wandb_name: llama-3b
train_on_inputs: false
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 5
optimizer: adamw_torch
learning_rate: 2e-5
bf16: true
logging_steps: 10
flash_attention: true
warmup_steps: 50
saves_per_epoch: 1
weight_decay: 0.0
deepspeed: axolotl/deepspeed_configs/zero3_bf16.json
special_tokens:
pad_token: <|end_of_text|>
models/llama
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the axolotl_format_data_llama.json dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- num_epochs: 5
Training results
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 117
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for mfirth/l3t
Base model
meta-llama/Llama-3.2-3B-Instruct