Built with Axolotl

See axolotl config

axolotl version: 0.5.3.dev41+g5e9fa33f

base_model: meta-llama/Llama-3.2-3B-Instruct

datasets:
  - path: axolotl_format_data_llama.json
    type: input_output
dataset_prepared_path: last_run_prepared
    
output_dir: ./models/llama-2
sequence_length: 2048

wandb_project: agent-v0
wandb_name: llama-3b

train_on_inputs: false
gradient_checkpointing: true
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 3
optimizer: adamw_torch
learning_rate: 2e-5

bf16: true
tf32: false

logging_steps: 5
flash_attention: true

warmup_steps: 10
saves_per_epoch: 1
weight_decay: 0.0

deepspeed: axolotl/deepspeed_configs/zero3_bf16.json

special_tokens:
  pad_token: <|end_of_text|>

models/llama-2

This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the axolotl_format_data_llama.json dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 3

Training results

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
134
Safetensors
Model size
3.21B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for mfirth/l3t_2

Finetuned
(229)
this model