lora-out
This model is a fine-tuned version of codellama/CodeLlama-13b-Instruct-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4172
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7046 | 0.01 | 1 | 0.6695 |
0.6348 | 0.05 | 7 | 0.6183 |
0.5056 | 0.1 | 14 | 0.4993 |
0.5127 | 0.15 | 21 | 0.4682 |
0.4663 | 0.2 | 28 | 0.4552 |
0.5534 | 0.25 | 35 | 0.4419 |
0.5231 | 0.3 | 42 | 0.4369 |
0.5045 | 0.35 | 49 | 0.4338 |
0.5444 | 0.4 | 56 | 0.4314 |
0.4922 | 0.45 | 63 | 0.4296 |
0.487 | 0.5 | 70 | 0.4261 |
0.4627 | 0.55 | 77 | 0.4230 |
0.5143 | 0.6 | 84 | 0.4210 |
0.4429 | 0.65 | 91 | 0.4199 |
0.4491 | 0.71 | 98 | 0.4193 |
0.4808 | 0.76 | 105 | 0.4188 |
0.483 | 0.81 | 112 | 0.4176 |
0.5513 | 0.86 | 119 | 0.4177 |
0.4574 | 0.91 | 126 | 0.4170 |
0.4723 | 0.96 | 133 | 0.4172 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
Training procedure
Framework versions
- PEFT 0.6.0
- Downloads last month
- 7
Model tree for mhhmm/typescript-instruct-20k-v4
Base model
codellama/CodeLlama-13b-Instruct-hf