# Fast-Inference with Ctranslate2
Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU.
quantized version of OpenAssistant/falcon-7b-sft-top1-696
pip install hf-hub-ctranslate2>=2.10.0 ctranslate2>=3.16.0
# from transformers import AutoTokenizer
model_name = "michaelfeil/ct2fast-falcon-7b-sft-top1-696"
from hf_hub_ctranslate2 import GeneratorCT2fromHfHub
model = GeneratorCT2fromHfHub(
# load in int8 on CUDA
model_name_or_path=model_name,
device="cuda",
compute_type="int8_float16",
# tokenizer=AutoTokenizer.from_pretrained("{ORG}/{NAME}")
)
outputs = model.generate(
text=["def fibonnaci(", "User: How are you doing? Bot:"],
max_length=64,
include_prompt_in_result=False
)
print(outputs)
Checkpoint compatible to ctranslate2>=3.16.0 and hf-hub-ctranslate2>=2.10.0
compute_type=int8_float16
fordevice="cuda"
compute_type=int8
fordevice="cpu"
Converted on 2023-06-16 using
ct2-transformers-converter --model OpenAssistant/falcon-7b-sft-top1-696 --output_dir ~/tmp-ct2fast-falcon-7b-sft-top1-696 --force --copy_files tokenizer.json README.md tokenizer_config.json generation_config.json special_tokens_map.json .gitattributes --quantization int8_float16 --trust_remote_code
Licence and other remarks:
This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo.
Original description
Open-Assistant Falcon 7B SFT OASST-TOP1 Model
This model is a fine-tuning of TII's Falcon 7B LLM. It was trained with 11,123 top-1 (high-quality) demonstrations of the OASST data set (exported on June 2, 2023) with a batch size of 128 for 8 epochs with LIMA style dropout (p=0.2) and a context-length of 2048 tokens.
Model Details
- Finetuned from: tiiuae/falcon-7b
- Model type: Causal decoder-only transformer language model
- Language: English, German, Spanish, French (and limited capabilities in Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish);
- Weights & Biases: Training log (Checkpoint: 696 steps)
- Code: Open-Assistant/model/model_training
- Demo: Continuations for 250 random prompts
- License: Apache 2.0
- Contact: Open-Assistant Discord
Prompting
Two special tokens are used to mark the beginning of user and assistant turns:
<|prompter|>
and <|assistant|>
. Each turn ends with a <|endoftext|>
token.
Input prompt example:
<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>
The input ends with the <|assistant|>
token to signal that the model should
start generating the assistant reply.
Sample Code
from transformers import AutoTokenizer
import transformers
import torch
model = "OpenAssistant/falcon-7b-sft-top1-696"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto",
)
input_text="<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>"
sequences = pipeline(
input_text,
max_length=500,
do_sample=True,
return_full_text=False,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
Configuration Details
Model:
falcon-7b:
dtype: bf16
log_dir: "falcon_log_7b"
learning_rate: 1e-5
model_name: "tiiuae/falcon-7b"
deepspeed_config: configs/zero_config.json
output_dir: falcon
weight_decay: 0.0
max_length: 2048
save_strategy: steps
eval_steps: 80
save_steps: 80
warmup_steps: 20
gradient_checkpointing: true
gradient_accumulation_steps: 4
per_device_train_batch_size: 4
per_device_eval_batch_size: 8
num_train_epochs: 8
save_total_limit: 4
residual_dropout: 0.2
residual_dropout_lima: true
Dataset:
oasst-top1:
# oasst_export: 11123 (100.00%)
datasets:
- oasst_export:
lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk" # sft-8.0
input_file_path: 2023-06-02_oasst_all_labels.jsonl.gz
val_split: 0.05
top_k: 1
Train command:
deepspeed trainer_sft.py --configs defaults falcon-7b oasst-top1 --cache_dir <data_cache_dir> --output_dir <output_path> --deepspeed
Export command:
python export_model.py --dtype bf16 --hf_repo_name OpenAssistant/falcon-7b-sft-top1 --trust_remote_code --auth_token <auth_token> <output_path> --max_shard_size 2GB
- Downloads last month
- 9