|
import os |
|
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE' |
|
import sys |
|
import torch |
|
from transformers import GPT2Tokenizer, GPT2LMHeadModel, TextDataset, DataCollatorForLanguageModeling, Trainer, TrainingArguments, get_linear_schedule_with_warmup |
|
|
|
class GPT2Assistant: |
|
def __init__(self): |
|
self.tokenizer = GPT2Tokenizer.from_pretrained("/Users/migueldeguzman/Desktop/gpt2xl_algos/RLLMv18/layer1/") |
|
|
|
def fine_tune(self, answer_file_path, model_output_dir, epochs=1.0): |
|
self.model = GPT2LMHeadModel.from_pretrained("/Users/migueldeguzman/Desktop/gpt2xl_algos/RLLMv18/layer1/") |
|
train_dataset = TextDataset( |
|
tokenizer=self.tokenizer, |
|
file_path=answer_file_path, |
|
block_size=128 |
|
) |
|
|
|
data_collator = DataCollatorForLanguageModeling( |
|
tokenizer=self.tokenizer, |
|
mlm=False |
|
) |
|
|
|
total_steps = len(train_dataset) * epochs |
|
warmup_steps = 0.1 * total_steps |
|
|
|
optimizer = torch.optim.Adam(self.model.parameters(), lr=42e-6, weight_decay=0.005) |
|
|
|
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_steps) |
|
|
|
training_args = TrainingArguments( |
|
output_dir=model_output_dir, |
|
overwrite_output_dir=True, |
|
num_train_epochs=epochs, |
|
per_device_train_batch_size=4, |
|
save_steps=10_000, |
|
save_total_limit=2, |
|
gradient_accumulation_steps=4, |
|
lr_scheduler_type='cosine', |
|
warmup_steps=500 |
|
) |
|
|
|
|
|
trainer = Trainer( |
|
model=self.model, |
|
args=training_args, |
|
data_collator=data_collator, |
|
train_dataset=train_dataset, |
|
optimizers=(optimizer, scheduler) |
|
) |
|
|
|
|
|
trainer.train() |
|
self.model.save_pretrained(model_output_dir) |
|
self.tokenizer.save_pretrained(model_output_dir) |
|
|
|
def generate_answer(self, prompt, max_length=1000): |
|
input_ids = self.tokenizer.encode(prompt, return_tensors="pt") |
|
|
|
if self.tokenizer.pad_token_id is None: |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
|
|
attention_mask = (input_ids != self.tokenizer.pad_token_id).long() |
|
|
|
output = self.model.generate( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
max_length=max_length, |
|
num_return_sequences=1, |
|
no_repeat_ngram_size=2, |
|
do_sample=True, |
|
top_k=50, |
|
top_p=0.95, |
|
temperature=0.000000000000000000000000000000000001 |
|
) |
|
|
|
answer = self.tokenizer.decode(output[0], skip_special_tokens=True) |
|
return answer[len(prompt):] |
|
|
|
def query(self, prompt): |
|
generated_answer = self.generate_answer(prompt) |
|
print(generated_answer) |
|
return generated_answer |
|
|
|
def main(): |
|
text_file_path = "/Users/migueldeguzman/Desktop/gpt2xl_algos/RLLMv18/layer2/shadow_integration.text" |
|
model_output_dir = "/Users/migueldeguzman/Desktop/gpt2xl_algos/RLLMv18/layer2/" |
|
|
|
assistant = GPT2Assistant() |
|
|
|
choice = input("Do you want to fine-tune a new model (n) or load an existing one (e)? (n/e): ") |
|
|
|
if choice.lower() == "n": |
|
print("Fine-tuning the model...") |
|
assistant.fine_tune(text_file_path, model_output_dir) |
|
print("Model fine-tuning complete.") |
|
elif choice.lower() == "e": |
|
print("Loading the existing model...") |
|
assistant.model = GPT2LMHeadModel.from_pretrained(model_output_dir) |
|
print("Existing model loaded.") |
|
else: |
|
print("Invalid choice. Exiting the program.") |
|
sys.exit() |
|
|
|
while True: |
|
prompt = input("Enter your question (or type 'exit' to stop): ") |
|
if prompt.lower() == "exit": |
|
break |
|
|
|
print("Answering in progress...") |
|
generated_answer = assistant.query(prompt) |
|
|
|
print("\n") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|