wav2vec2-base-timit-demo-google-colab

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5351
  • Wer: 0.3384

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.6311 1.0 500 2.6700 1.0
1.0104 2.01 1000 0.5289 0.5277
0.4483 3.01 1500 0.4576 0.4623
0.3089 4.02 2000 0.4483 0.4255
0.2278 5.02 2500 0.4463 0.4022
0.1886 6.02 3000 0.4653 0.3938
0.1578 7.03 3500 0.4624 0.3855
0.1429 8.03 4000 0.4420 0.3854
0.1244 9.04 4500 0.4980 0.3787
0.1126 10.04 5000 0.4311 0.3785
0.1082 11.04 5500 0.5114 0.3782
0.0888 12.05 6000 0.5392 0.3725
0.0835 13.05 6500 0.6011 0.3941
0.074 14.06 7000 0.5030 0.3652
0.0667 15.06 7500 0.5041 0.3583
0.0595 16.06 8000 0.5125 0.3605
0.0578 17.07 8500 0.5206 0.3592
0.0573 18.07 9000 0.5208 0.3643
0.0469 19.08 9500 0.4670 0.3537
0.0442 20.08 10000 0.5388 0.3497
0.0417 21.08 10500 0.5213 0.3581
0.0361 22.09 11000 0.5096 0.3465
0.0338 23.09 11500 0.5178 0.3459
0.0333 24.1 12000 0.5240 0.3490
0.0256 25.1 12500 0.5438 0.3464
0.0248 26.1 13000 0.5182 0.3412
0.0231 27.11 13500 0.5628 0.3423
0.0228 28.11 14000 0.5416 0.3419
0.0223 29.12 14500 0.5351 0.3384

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.11.0+cu113
  • Datasets 1.18.3
  • Tokenizers 0.12.1
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.