Quantization details

Upstream README

DeepSeek Coder

[🏠Homepage] | [🤖 Chat with DeepSeek Coder] | [Discord] | [Wechat(微信)]


1. Introduction of Deepseek-Coder-7B-Base-v1.5

Deepseek-Coder-7B-Base-v1.5 is continue pre-trained from Deepseek-LLM 7B on 2T tokens by employing a window size of 4K and next token prediction objective.

2. Evaluation Results

DeepSeek Coder

3. How to Use

Here give an example of how to use our model.

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-7b-base-v1.5", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-7b-base-v1.5", trust_remote_code=True).cuda()
input_text = "#write a quick sort algorithm"
inputs = tokenizer(input_text, return_tensors="pt").cuda()
outputs = model.generate(**inputs, max_length=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

4. License

This code repository is licensed under the MIT License. The use of DeepSeek Coder models is subject to the Model License. DeepSeek Coder supports commercial use.

See the LICENSE-MODEL for more details.

5. Contact

If you have any questions, please raise an issue or contact us at [email protected].

Downloads last month
86
GGUF
Model size
6.91B params
Architecture
llama

4-bit

5-bit

6-bit

8-bit

16-bit

Inference API
Unable to determine this model's library. Check the docs .