SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1.0
  • '경량 방수토시 팔토시 작업 위생 안전 경량방수토시(블랙계열) 바움하우스'
  • '사러왕 운전 팔토시 레이스 여성 쉬폰 골프토시 워머 암 핸드 롱장갑 4 레이스 여성팔토시 살구색 언벤샵'
  • '여성운전 팔토시 화이트 태양금'
2.0
  • '[갤러리아] 닥스 DCGV3F287 [남녀공용] 베이지 캐시미어 니트 장갑(타임월드) 한화갤러리아(주)'
  • '[갤러리아] 루이까또즈 방울방울 니트워머 GGILW30005 GGILW30005 베이지 한화갤러리아(주)'
  • '(신세계김해점)질스튜어트 여성 가죽장갑 GBS740X 블랙(01) 신세계백화점'
0.0
  • '남성 가죽 콤비장갑 GPD293H/닥스(장갑) 블랙 롯데쇼핑(주)'
  • '(10%+10%쿠폰) 시즌오프 잡화 / 장갑 목도리 스타킹 양말 방한용품 1_15.윈터 마스크캡_1+1 스킨라이즈'
  • '[갤러리아] [닥스] 남성 가죽 장갑 (D) GPS332H(타임월드) 진브라운91 한화갤러리아(주)'

Evaluation

Metrics

Label Metric
all 0.8877

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_ac12")
# Run inference
preds = model("남성 가죽장갑 GPS742X 블랙 롯데백화점1관")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 10.5733 24
Label Training Sample Count
0.0 50
1.0 50
2.0 50

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (20, 20)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0417 1 0.4357 -
2.0833 50 0.1092 -
4.1667 100 0.006 -
6.25 150 0.0002 -
8.3333 200 0.0002 -
10.4167 250 0.0001 -
12.5 300 0.0001 -
14.5833 350 0.0001 -
16.6667 400 0.0001 -
18.75 450 0.0001 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0.dev0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.46.1
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.20.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
78
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for mini1013/master_cate_ac12

Base model

klue/roberta-base
Finetuned
(213)
this model

Evaluation results