SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1.0
  • '고리 집게 가방 여행용 멜빵 클립 다용도 삼각버클 후크 옐로우몰'
  • '패션 여성서스펜더 스트랩 양복 출근룩 정장 코스튬 흰색 폭 2.5cm 120cm 맴매2'
  • '패션 여성서스펜더 스트랩 양복 출근룩 정장 코스튬 파란색 흰색 빨간색 줄무늬 폭2.5 120cm 맴매2'
2.0
  • 'Basic Leather Belt 네이비_100cm 만달문화여행사'
  • '다이에나롤랑 러블리 여자벨트 146276 은장 브라운 FCB0012CM_L 105 네잎클로버마켓'
  • '[갤러리아] 헤지스핸드백HJBE2F406W2브라운 스티치장식 소가죽 여성 벨트(타임월드) 한화갤러리아(주)'
0.0
  • '(아크테릭스)(공식판매처)(23SS) 컨베이어 벨트 32mm (AENSUX5577) BLACK_SM '
  • '[갤러리아] 헤지스핸드백 HJBE2F775BK_ 블랙 빅로고 버클 가죽 자동벨트(타임월드) 한화갤러리아(주)'
  • '닥스_핸드백 (선물포장/쇼핑백동봉) 블랙 체크배색 가죽 자동벨트 DBBE3E990BK 롯데백화점2관'

Evaluation

Metrics

Label Metric
all 0.9650

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_ac3")
# Run inference
preds = model("[로제이] 정장 캐주얼 가죽 더블 서스펜더 멜빵 NRMGSN011_BL 블랙_free ")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 3 9.6133 17
Label Training Sample Count
0.0 50
1.0 50
2.0 50

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (20, 20)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0417 1 0.394 -
2.0833 50 0.0731 -
4.1667 100 0.0 -
6.25 150 0.0 -
8.3333 200 0.0 -
10.4167 250 0.0 -
12.5 300 0.0 -
14.5833 350 0.0 -
16.6667 400 0.0 -
18.75 450 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0.dev0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.46.1
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.20.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
75
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for mini1013/master_cate_ac3

Base model

klue/roberta-base
Finetuned
(213)
this model

Evaluation results