File size: 12,165 Bytes
17bf755 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 여성 가방 숄더백 미니 크로스백 퀼팅백 체인백 토트백 미니백 여자 핸드백 구름백 클러치백 직장인 백팩 프리아_카멜 더블유팝
- text: 국내 잔스포츠 백팩 슈퍼브레이크 4QUT 블랙 학생 여성 가벼운 가방 캠핑 여행 당일 가원
- text: 국내생산 코튼 양줄면주머니 미니&에코 주머니 7종 학원 학교 만들기수업 양줄주머니_14cmX28cm(J14) 명성패키지
- text: 웨빙 플라워 스트랩 레디백 길이조절 가방끈 어깨끈 리폼 3-플라워가방끈-흰색 이백프로
- text: 엔비조네/가방끈/가방끈리폼/가죽끈/크로스끈/숄더끈/스트랩 AOR오링25mm_블랙오플_폭11mm *35cm 니켈 엔비조네
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.7867699642431466
name: Metric
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 10 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.0 | <ul><li>'[현대백화점][루이까또즈] MOONMOON(문문) 여성호보백 HR3SO02BL (주)현대백화점'</li><li>'소프트레더 파스텔 보부상 빅숄더백 휘뚜루마뚜루가방 토드백 블랙_one size 아이디어코리아 주식회사'</li><li>'DRAGON DIFFUSION 드래곤디퓨전 폼폼 더블 점프백 여성 버킷백 8838 드래곤백 다크브라운 (DARK BROWN) 시계1위워치짱'</li></ul> |
| 7.0 | <ul><li>'디어 4colors_H70301010 (W)퍼플와인 '</li><li>'[마이클코어스][정상가 1080000원] 에밀리아 라지 레더 사첼 35H0GU5S7T2171 신세계몰'</li><li>'칼린 소프트M 10colors _H71307020 (Y)라임네온_one size (주)칼린홍대점'</li></ul> |
| 1.0 | <ul><li>'마젤란9901 메신저백 크로스백 학생 여행용 가방 백팩 1_MA-9901-BlackPurple(+LK) 더블유팝'</li><li>'마젤란9901 메신저백 크로스백 학생 여행용 가방 백팩 1_MA-9901-D.Gray(+LK) 더블유팝'</li><li>'마젤란9901 메신저백 크로스백 학생 여행용 가방 백팩 1_MA-9901-Black(+LK) 더블유팝'</li></ul> |
| 9.0 | <ul><li>'룰루레몬 에브리웨어 벨트 백 Fleece WHTO/GOLD White Opal/Gold - O/S 오늘의원픽'</li><li>'[리본즈] LEMAIRE 남성 숄더백 37408558 블랙_ONE SIZE/단일상품 마리오아울렛몰'</li><li>'[코치][공식] 홀 벨트 백 CU103 WYE [00001] 없음 현대백화점'</li></ul> |
| 0.0 | <ul><li>'가죽가방끈 천연소가죽 가죽 스트랩 32Color 블랙12mm페이던트골드 대성메디칼'</li><li>'[최초가 228,000원][잘모이] 밍크 듀에 퍼 스트랩 LTZ-5205 168688 와인스카이블루 주식회사 미르에셋'</li><li>'[조이그라이슨](강남점) 첼시 스트랩 LW4SX6880_55 GOLD 신세계백화점'</li></ul> |
| 5.0 | <ul><li>'[소마치] 트래블 여권 지갑 파우치 핸드폰 미니 크로스백 카키_체인105cm(키160전후) 주식회사 소마치'</li><li>'비비안웨스트우드 코튼 숄더백 EDGWARE (3컬러) chacoal(당일발송) KHY INTERNATIONAL'</li><li>'남여 공용 미니 메신저백 귀여운 크로스백 학생 미니백 여행 보조 가방 여행용 보조백 아이보리 구공구코리아'</li></ul> |
| 2.0 | <ul><li>'메종미네드 MAISON MINED TWO POCKET BACKPACK S OC오피스'</li><li>'백팩01K1280ZSK외1종 블랙 롯데백화점1관'</li><li>'ANC CLASSIC BACKPACK_BLACK BLACK 주식회사 데일리컴퍼니'</li></ul> |
| 4.0 | <ul><li>'[스타벅스]텀블러 가방 컵홀더 데일리 캔버스 에코백 지퍼형_베이지 씨에스 인더스트리'</li><li>'마리떼 FRANCOIS GIRBAUD CLASSIC LOGO ECO BAG natural OS 다함'</li><li>'마크 곤잘레스 Print Eco Bag - 블랙 568032 BLACK_FREE 라임e커머스'</li></ul> |
| 8.0 | <ul><li>'국내생산 코튼 양줄면주머니 미니&에코 주머니 7종 학원 학교 만들기수업 양줄주머니_20cmX25cm(J20) 명성패키지'</li><li>'조리개 타입 반투명 파우치 보관 신발주머니 주머니 끈주머니 끈파우치 신주머니 여행용 중형(25X35) 정바른 길정'</li><li>'국내생산 코튼 화이트&블랙주머니 학원 학교 주머니만들기 W15_화이트 명성패키지'</li></ul> |
| 6.0 | <ul><li>'메종 마르지엘라 타비 스니커즈 S37WS0578 P4291 T1003 EU41(260-265) 보광컴퍼니'</li><li>'[롯데백화점]루이까또즈 클러치백 MO2DL03MDABL 롯데백화점_'</li><li>'깔끔한 여성용 데일리 핸드 스트랩 클러치 가방 남자클러치백 로우마켓'</li></ul> |
## Evaluation
### Metrics
| Label | Metric |
|:--------|:-------|
| **all** | 0.7868 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_ac9")
# Run inference
preds = model("웨빙 플라워 스트랩 레디백 길이조절 가방끈 어깨끈 리폼 3-플라워가방끈-흰색 이백프로")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 3 | 9.6146 | 30 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 50 |
| 1.0 | 17 |
| 2.0 | 50 |
| 3.0 | 50 |
| 4.0 | 50 |
| 5.0 | 50 |
| 6.0 | 50 |
| 7.0 | 50 |
| 8.0 | 50 |
| 9.0 | 50 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0137 | 1 | 0.4278 | - |
| 0.6849 | 50 | 0.3052 | - |
| 1.3699 | 100 | 0.1524 | - |
| 2.0548 | 150 | 0.0583 | - |
| 2.7397 | 200 | 0.0292 | - |
| 3.4247 | 250 | 0.0197 | - |
| 4.1096 | 300 | 0.0061 | - |
| 4.7945 | 350 | 0.0022 | - |
| 5.4795 | 400 | 0.0033 | - |
| 6.1644 | 450 | 0.0003 | - |
| 6.8493 | 500 | 0.0002 | - |
| 7.5342 | 550 | 0.0001 | - |
| 8.2192 | 600 | 0.0001 | - |
| 8.9041 | 650 | 0.0001 | - |
| 9.5890 | 700 | 0.0001 | - |
| 10.2740 | 750 | 0.0001 | - |
| 10.9589 | 800 | 0.0001 | - |
| 11.6438 | 850 | 0.0001 | - |
| 12.3288 | 900 | 0.0001 | - |
| 13.0137 | 950 | 0.0001 | - |
| 13.6986 | 1000 | 0.0001 | - |
| 14.3836 | 1050 | 0.0001 | - |
| 15.0685 | 1100 | 0.0001 | - |
| 15.7534 | 1150 | 0.0001 | - |
| 16.4384 | 1200 | 0.0001 | - |
| 17.1233 | 1250 | 0.0 | - |
| 17.8082 | 1300 | 0.0001 | - |
| 18.4932 | 1350 | 0.0001 | - |
| 19.1781 | 1400 | 0.0001 | - |
| 19.8630 | 1450 | 0.0001 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |