metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 질레트 퓨전 하이드라젤 센서티브스킨 195mgX3입 (질레트퓨전하이드라젤)-190mlx3통★특가★ 애니몰
- text: 꽃을든남자 플러스유 포맨 스킨 250ml 1개 플러스유 포맨 로션 아주상사
- text: 오니츠카타이거 MEXICO 66 SD 크림 남성 운동화 스니커즈 1183A838-100 27.5cm_- 77언니
- text: 키엘 훼이셜 퓨얼 에너자이징 모이스처 트리트먼트 포 맨 125ml 옵션없음 주식회사 샌팅
- text: 비오템옴므 포스 수프림 클렌저 125ml 비오템 포스 수프림 클렌저 125ml 메이비굿컴퍼니
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.561352657004831
name: Accuracy
SetFit with mini1013/master_domain
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: mini1013/master_domain
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 13 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
13.0 |
|
12.0 |
|
6.0 |
|
0.0 |
|
5.0 |
|
2.0 |
|
3.0 |
|
8.0 |
|
10.0 |
|
9.0 |
|
11.0 |
|
1.0 |
|
4.0 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.5614 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt0_test")
# Run inference
preds = model("꽃을든남자 플러스유 포맨 스킨 250ml 1개 플러스유 포맨 로션 아주상사")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 4 | 8.8913 | 19 |
Label | Training Sample Count |
---|---|
0.0 | 12 |
1.0 | 25 |
2.0 | 20 |
3.0 | 19 |
4.0 | 17 |
5.0 | 18 |
6.0 | 22 |
8.0 | 19 |
9.0 | 10 |
10.0 | 11 |
11.0 | 22 |
12.0 | 18 |
13.0 | 17 |
Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (50, 50)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 60
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0370 | 1 | 0.4919 | - |
1.8519 | 50 | 0.3561 | - |
3.7037 | 100 | 0.0781 | - |
5.5556 | 150 | 0.0282 | - |
7.4074 | 200 | 0.0154 | - |
9.2593 | 250 | 0.0063 | - |
11.1111 | 300 | 0.0005 | - |
12.9630 | 350 | 0.0002 | - |
14.8148 | 400 | 0.0002 | - |
16.6667 | 450 | 0.0001 | - |
18.5185 | 500 | 0.0001 | - |
20.3704 | 550 | 0.0001 | - |
22.2222 | 600 | 0.0001 | - |
24.0741 | 650 | 0.0001 | - |
25.9259 | 700 | 0.0001 | - |
27.7778 | 750 | 0.0001 | - |
29.6296 | 800 | 0.0001 | - |
31.4815 | 850 | 0.0001 | - |
33.3333 | 900 | 0.0001 | - |
35.1852 | 950 | 0.0001 | - |
37.0370 | 1000 | 0.0001 | - |
38.8889 | 1050 | 0.0001 | - |
40.7407 | 1100 | 0.0001 | - |
42.5926 | 1150 | 0.0001 | - |
44.4444 | 1200 | 0.0001 | - |
46.2963 | 1250 | 0.0001 | - |
48.1481 | 1300 | 0.0001 | - |
50.0 | 1350 | 0.0001 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}