File size: 7,896 Bytes
8457b62
 
 
 
 
 
 
 
 
 
 
 
4250543
 
 
 
 
 
8457b62
 
 
 
 
 
 
 
 
 
 
 
 
4250543
8457b62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4250543
 
 
 
 
8457b62
 
 
 
 
 
4250543
8457b62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4250543
8457b62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4250543
8457b62
 
95864f5
8457b62
 
 
 
 
 
 
 
 
 
 
 
 
 
95864f5
 
4250543
 
95864f5
 
 
4250543
 
 
 
8457b62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 디스이즈 명화 디퓨저 리필 퓨어코튼 200ml (WB6AEE5) 본상품선택 기타/해당사항 없음
- text: 에르메스 떼르 데르메스EDT 50ml 옵션없음 주식회사 비엘컴퍼니
- text: '룸 디퓨저 코리앤더 200ml CL13965000200 투명_F 라부르켓(L:A BRUKET AB)/(주)신세계인터내셔날, 서울특별시
    강남구 도산대로 449, 소비자상담실: 1644-4490'
- text: '[향수] MAISON LOUIS MARIE 넘버13 누벨바그 퍼퓸오일 15ML509678 흰색_FREE(3Y6) 위원투고투'
- text: '(시시호시)훈옥당 다이고의 체리블로섬 인센스 멀티칼라(ML)_Free '
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.9578313253012049
      name: Accuracy
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                          |
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0   | <ul><li>'로얄워터 블랑쉬 코튼 비누향 베이비파우더 살냄새 수제 승무원 엑스트레 드 퍼퓸 30ml 24. 블루밍 (판매 1위) 주식회사 로얄워터'</li><li>'블루 드 샤넬 빠르펭 50ML 옵션없음 플로라 무역'</li><li>'딥티크 뗌포 오드 퍼퓸 75ml 옵션없음 대박컴퍼니'</li></ul>                      |
| 0.0   | <ul><li>'쿨티 - 스틸레 룸 디퓨저 - 린파 500ml/16.9oz 스트로베리넷 (홍콩)'</li><li>'소소모소 디퓨저리필 500ml_코튼브리즈 _salestrNo:2439_지점명:emartNE.O.001 (주)리빙탑스/해당사항 없음'</li><li>'디퓨저 섬유 리드스틱 화이트 50개입 디퓨저 섬유 옵션없음 '</li></ul>   |
| 2.0   | <ul><li>'인센스 스틱 홀더 접시형 그린 (WC9C73F) 본상품선택 기타/해당사항 없음'</li><li>'인센스홀더향 향꽂이 홀더 물방울 인테리어 인센스 (WD2F3FF) 본상품선택 기타/해당사항 없음'</li><li>'인센스 홀더 미니화병 황동 향 피우기 나그참파 꽂이 (WBC1E2F) 본상품선택 기타/해당사항 없음'</li></ul> |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.9578   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt10_test")
# Run inference
preds = model("에르메스 떼르 데르메스EDT 50ml 옵션없음 주식회사 비엘컴퍼니")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 5   | 9.4127 | 18  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 20                    |
| 1.0   | 23                    |
| 2.0   | 20                    |

### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (50, 50)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 60
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-----:|:----:|:-------------:|:---------------:|
| 0.125 | 1    | 0.4915        | -               |
| 6.25  | 50   | 0.1556        | -               |
| 12.5  | 100  | 0.0           | -               |
| 18.75 | 150  | 0.0           | -               |
| 25.0  | 200  | 0.0           | -               |
| 31.25 | 250  | 0.0           | -               |
| 37.5  | 300  | 0.0           | -               |
| 43.75 | 350  | 0.0           | -               |
| 50.0  | 400  | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->