|
--- |
|
base_model: mini1013/master_domain |
|
library_name: setfit |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: 이브로쉐 모링가 리프레시 헤어 식초 400ml 1개 옵션없음 주식회사 다올연구소 |
|
- text: Hair Identifier Spray for Face Shaving 2024 Skin Dermaplaning Moisturizing |
|
and Care Dermaplaner 2 PC 옵션없음 젠틀스토어 |
|
- text: 수앤 오리진 블랙 단백질샴푸700ml,4개 옵션없음 다부자 |
|
- text: 클로란 퀴닌 에델바이스 두피 세럼 100ml 옵션없음 스루치로 유한책임회사 |
|
- text: 이브로쉐 리프레쉬 헤어식초(모링가) 400ml 옵션없음 스루치로 유한책임회사 |
|
inference: true |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.6042402826855123 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 8 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 6.0 | <ul><li>'CHI 실크 인퓨전 12 Fl oz (관부가세포함) 옵션없음 제이글로벌컴퍼니'</li><li>'아모스 리페어 샤인 모이스트 에센스 100ml 옵션없음 티비'</li><li>'BAO H LAB Hair Loss Care Ampoule 바오에이치랩 탈모케어앰플 옵션없음 주식회사 바오젠'</li></ul> | |
|
| 7.0 | <ul><li>'커리쉴 프레스티지 실키 3종 옵션없음 (주)커리쉴'</li><li>'미쟝센 퍼펙트 매직 스트레이트 샴푸&트리트먼트&세럼 3종 세트+트리트먼트 30ml 아모레퍼시픽'</li><li>'[르도암 공식]르도암 카멜리아 헤어 2종 세트(샴푸+트리트먼트) LEDOAM1935'</li></ul> | |
|
| 0.0 | <ul><li>'실키드 검은콩 코팅 탈모펜슬™ / 머리숱앰플 두피앰플 산후탈모 서리태 비건 에센스 홈 1개 (1개월) 탈모펜슬™ 주식회사 팀오브라만차(Team of la mancha Corp.)'</li><li>'에버미라클 200ml EM 풀라무 토너 스칼프 토닉 8W98E7F225 옵션없음 파워몰'</li><li>'포티샤 모발강화 두피세럼 100ml/르네휘테르 옵션없음 롯데쇼핑(주)'</li></ul> | |
|
| 4.0 | <ul><li>'[클렌징대전(클렌징밤 )] 로픈 바오밥 세라마이드LPP 프리미엄 헤어트리트먼트 베이비파우더향 1000g 옵션없음 (주)우신뷰티'</li><li>'허벌리스테 헤어 리페어세럼 150ml 1개 + 헤어 마스크 500ml - 1개 옵션없음 복슬강아지'</li><li>'[백화점 정품] 모로칸오일 오리지널 오일 트리트먼트 100ml 제3자 배송관련 개인정보활용에 동의함 버니버즈'</li></ul> | |
|
| 2.0 | <ul><li>'헤드앤숄더 시트러스 레몬 샴푸 750ml 옵션없음 포에이치제이'</li><li>'아렌 일진 산성샴푸펌컬러 1000ml 옵션없음 해문인터내셔널'</li><li>'물없이쓰는샴푸 물없이머리감는 입원준비물 노워시 옵션없음 해피2데이'</li></ul> | |
|
| 5.0 | <ul><li>'바이오테닉스 홈케어 매직헬프 바이-페이즈 리컨디셔너 60ml 비너스 클리닉 옵션없음 주식회사 위즈온컴퍼니'</li><li>'[바이레도] 블랑쉬 헤어퍼퓸 75ml 화이트_F 푸치코리아 유한책임회사'</li><li>'바이레도 집시 워터 헤어퍼퓸 75ml 백화점 상품 옵션없음 코코스팜'</li></ul> | |
|
| 1.0 | <ul><li>'케라시스린스 퍼퓸 체리블라썸 1000ml 옵션없음 땡그리나'</li><li>'[갤러리아] [비건 NEW] 진저 스캘프 케어 대용량 컨디셔너 400ML(한화갤러리아㈜ 광교점) 옵션없음 한화갤러리아(주)'</li><li>'케라시스 스위트 앤 플라워리 퍼퓸 린스 1L 옵션없음 해피쭈몰'</li></ul> | |
|
| 3.0 | <ul><li>'모비88 아데노신 특허등록 탈모토닉 볼륨업 비듬 제거 옵션없음 달이커머스'</li><li>'힐텀 어성초 맥주효모 토닉 120ml 옵션없음 현스 마켓'</li><li>'닥터포헤어 폴리젠 토닉 120ml x 2개 두피 영양공급 탈모증상완화 영양제 코스트코 옵션없음 또또상회'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.6042 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_bt12_test") |
|
# Run inference |
|
preds = model("수앤 오리진 블랙 단백질샴푸700ml,4개 옵션없음 다부자") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 4 | 9.25 | 21 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0.0 | 12 | |
|
| 1.0 | 23 | |
|
| 2.0 | 19 | |
|
| 3.0 | 14 | |
|
| 4.0 | 18 | |
|
| 5.0 | 20 | |
|
| 6.0 | 28 | |
|
| 7.0 | 18 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (512, 512) |
|
- num_epochs: (50, 50) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 60 |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- l2_weight: 0.01 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0556 | 1 | 0.4865 | - | |
|
| 2.7778 | 50 | 0.3392 | - | |
|
| 5.5556 | 100 | 0.0584 | - | |
|
| 8.3333 | 150 | 0.0087 | - | |
|
| 11.1111 | 200 | 0.003 | - | |
|
| 13.8889 | 250 | 0.0002 | - | |
|
| 16.6667 | 300 | 0.0001 | - | |
|
| 19.4444 | 350 | 0.0001 | - | |
|
| 22.2222 | 400 | 0.0001 | - | |
|
| 25.0 | 450 | 0.0001 | - | |
|
| 27.7778 | 500 | 0.0001 | - | |
|
| 30.5556 | 550 | 0.0 | - | |
|
| 33.3333 | 600 | 0.0 | - | |
|
| 36.1111 | 650 | 0.0 | - | |
|
| 38.8889 | 700 | 0.0 | - | |
|
| 41.6667 | 750 | 0.0 | - | |
|
| 44.4444 | 800 | 0.0 | - | |
|
| 47.2222 | 850 | 0.0 | - | |
|
| 50.0 | 900 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 2.2.0a0+81ea7a4 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |