SetFit with mini1013/master_domain
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: mini1013/master_domain
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 4 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
3 |
|
0 |
|
2 |
|
1 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.5302 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt1_test_flat_top_cate")
# Run inference
preds = model("디올 베르니 212 튀튀 LotteOn > 뷰티 > 메이크업 > 메이크업세트 LotteOn > 뷰티 > 메이크업 > 메이크업세트")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 13 | 22.7236 | 41 |
Label | Training Sample Count |
---|---|
0 | 49 |
1 | 50 |
2 | 50 |
3 | 50 |
Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 100
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0032 | 1 | 0.4603 | - |
0.1608 | 50 | 0.4502 | - |
0.3215 | 100 | 0.4315 | - |
0.4823 | 150 | 0.3996 | - |
0.6431 | 200 | 0.365 | - |
0.8039 | 250 | 0.2954 | - |
0.9646 | 300 | 0.2647 | - |
1.1254 | 350 | 0.2378 | - |
1.2862 | 400 | 0.2257 | - |
1.4469 | 450 | 0.2165 | - |
1.6077 | 500 | 0.213 | - |
1.7685 | 550 | 0.1999 | - |
1.9293 | 600 | 0.1838 | - |
2.0900 | 650 | 0.1614 | - |
2.2508 | 700 | 0.1164 | - |
2.4116 | 750 | 0.0553 | - |
2.5723 | 800 | 0.0366 | - |
2.7331 | 850 | 0.0279 | - |
2.8939 | 900 | 0.0219 | - |
3.0547 | 950 | 0.0166 | - |
3.2154 | 1000 | 0.0111 | - |
3.3762 | 1050 | 0.0067 | - |
3.5370 | 1100 | 0.0084 | - |
3.6977 | 1150 | 0.0066 | - |
3.8585 | 1200 | 0.0048 | - |
4.0193 | 1250 | 0.0028 | - |
4.1801 | 1300 | 0.0005 | - |
4.3408 | 1350 | 0.0003 | - |
4.5016 | 1400 | 0.0004 | - |
4.6624 | 1450 | 0.0001 | - |
4.8232 | 1500 | 0.0001 | - |
4.9839 | 1550 | 0.0001 | - |
5.1447 | 1600 | 0.0001 | - |
5.3055 | 1650 | 0.0001 | - |
5.4662 | 1700 | 0.0002 | - |
5.6270 | 1750 | 0.0 | - |
5.7878 | 1800 | 0.0 | - |
5.9486 | 1850 | 0.0 | - |
6.1093 | 1900 | 0.0001 | - |
6.2701 | 1950 | 0.0 | - |
6.4309 | 2000 | 0.0 | - |
6.5916 | 2050 | 0.0 | - |
6.7524 | 2100 | 0.0 | - |
6.9132 | 2150 | 0.0002 | - |
7.0740 | 2200 | 0.0002 | - |
7.2347 | 2250 | 0.0 | - |
7.3955 | 2300 | 0.0 | - |
7.5563 | 2350 | 0.0 | - |
7.7170 | 2400 | 0.0 | - |
7.8778 | 2450 | 0.0 | - |
8.0386 | 2500 | 0.0 | - |
8.1994 | 2550 | 0.0 | - |
8.3601 | 2600 | 0.0 | - |
8.5209 | 2650 | 0.0 | - |
8.6817 | 2700 | 0.0 | - |
8.8424 | 2750 | 0.0 | - |
9.0032 | 2800 | 0.0 | - |
9.1640 | 2850 | 0.0 | - |
9.3248 | 2900 | 0.0 | - |
9.4855 | 2950 | 0.0 | - |
9.6463 | 3000 | 0.0 | - |
9.8071 | 3050 | 0.0 | - |
9.9678 | 3100 | 0.0 | - |
10.1286 | 3150 | 0.0 | - |
10.2894 | 3200 | 0.0 | - |
10.4502 | 3250 | 0.0 | - |
10.6109 | 3300 | 0.0 | - |
10.7717 | 3350 | 0.0 | - |
10.9325 | 3400 | 0.0 | - |
11.0932 | 3450 | 0.0 | - |
11.2540 | 3500 | 0.0 | - |
11.4148 | 3550 | 0.0 | - |
11.5756 | 3600 | 0.0 | - |
11.7363 | 3650 | 0.0 | - |
11.8971 | 3700 | 0.0 | - |
12.0579 | 3750 | 0.0004 | - |
12.2186 | 3800 | 0.0 | - |
12.3794 | 3850 | 0.0001 | - |
12.5402 | 3900 | 0.0001 | - |
12.7010 | 3950 | 0.0 | - |
12.8617 | 4000 | 0.0001 | - |
13.0225 | 4050 | 0.0002 | - |
13.1833 | 4100 | 0.0009 | - |
13.3441 | 4150 | 0.0037 | - |
13.5048 | 4200 | 0.0025 | - |
13.6656 | 4250 | 0.0009 | - |
13.8264 | 4300 | 0.0002 | - |
13.9871 | 4350 | 0.0002 | - |
14.1479 | 4400 | 0.0 | - |
14.3087 | 4450 | 0.0002 | - |
14.4695 | 4500 | 0.0001 | - |
14.6302 | 4550 | 0.0004 | - |
14.7910 | 4600 | 0.0008 | - |
14.9518 | 4650 | 0.0 | - |
15.1125 | 4700 | 0.0 | - |
15.2733 | 4750 | 0.0001 | - |
15.4341 | 4800 | 0.0 | - |
15.5949 | 4850 | 0.0 | - |
15.7556 | 4900 | 0.0002 | - |
15.9164 | 4950 | 0.0 | - |
16.0772 | 5000 | 0.0 | - |
16.2379 | 5050 | 0.0001 | - |
16.3987 | 5100 | 0.0 | - |
16.5595 | 5150 | 0.0 | - |
16.7203 | 5200 | 0.0 | - |
16.8810 | 5250 | 0.0 | - |
17.0418 | 5300 | 0.0 | - |
17.2026 | 5350 | 0.0 | - |
17.3633 | 5400 | 0.0 | - |
17.5241 | 5450 | 0.0 | - |
17.6849 | 5500 | 0.0 | - |
17.8457 | 5550 | 0.0 | - |
18.0064 | 5600 | 0.0 | - |
18.1672 | 5650 | 0.0 | - |
18.3280 | 5700 | 0.0 | - |
18.4887 | 5750 | 0.0 | - |
18.6495 | 5800 | 0.0 | - |
18.8103 | 5850 | 0.0 | - |
18.9711 | 5900 | 0.0 | - |
19.1318 | 5950 | 0.0 | - |
19.2926 | 6000 | 0.0 | - |
19.4534 | 6050 | 0.0 | - |
19.6141 | 6100 | 0.0 | - |
19.7749 | 6150 | 0.0 | - |
19.9357 | 6200 | 0.0 | - |
20.0965 | 6250 | 0.0 | - |
20.2572 | 6300 | 0.0 | - |
20.4180 | 6350 | 0.0 | - |
20.5788 | 6400 | 0.0 | - |
20.7395 | 6450 | 0.0 | - |
20.9003 | 6500 | 0.0 | - |
21.0611 | 6550 | 0.0 | - |
21.2219 | 6600 | 0.0 | - |
21.3826 | 6650 | 0.0 | - |
21.5434 | 6700 | 0.0 | - |
21.7042 | 6750 | 0.0 | - |
21.8650 | 6800 | 0.0 | - |
22.0257 | 6850 | 0.0 | - |
22.1865 | 6900 | 0.0 | - |
22.3473 | 6950 | 0.0 | - |
22.5080 | 7000 | 0.0 | - |
22.6688 | 7050 | 0.0 | - |
22.8296 | 7100 | 0.0 | - |
22.9904 | 7150 | 0.0 | - |
23.1511 | 7200 | 0.0 | - |
23.3119 | 7250 | 0.0 | - |
23.4727 | 7300 | 0.0 | - |
23.6334 | 7350 | 0.0 | - |
23.7942 | 7400 | 0.0 | - |
23.9550 | 7450 | 0.0 | - |
24.1158 | 7500 | 0.0 | - |
24.2765 | 7550 | 0.0 | - |
24.4373 | 7600 | 0.0 | - |
24.5981 | 7650 | 0.0 | - |
24.7588 | 7700 | 0.0 | - |
24.9196 | 7750 | 0.0 | - |
25.0804 | 7800 | 0.0 | - |
25.2412 | 7850 | 0.0 | - |
25.4019 | 7900 | 0.0 | - |
25.5627 | 7950 | 0.0 | - |
25.7235 | 8000 | 0.0 | - |
25.8842 | 8050 | 0.0 | - |
26.0450 | 8100 | 0.0 | - |
26.2058 | 8150 | 0.0 | - |
26.3666 | 8200 | 0.0 | - |
26.5273 | 8250 | 0.0 | - |
26.6881 | 8300 | 0.0 | - |
26.8489 | 8350 | 0.0 | - |
27.0096 | 8400 | 0.0 | - |
27.1704 | 8450 | 0.0 | - |
27.3312 | 8500 | 0.0 | - |
27.4920 | 8550 | 0.0 | - |
27.6527 | 8600 | 0.0 | - |
27.8135 | 8650 | 0.0 | - |
27.9743 | 8700 | 0.0 | - |
28.1350 | 8750 | 0.0 | - |
28.2958 | 8800 | 0.0 | - |
28.4566 | 8850 | 0.0 | - |
28.6174 | 8900 | 0.0 | - |
28.7781 | 8950 | 0.0 | - |
28.9389 | 9000 | 0.0 | - |
29.0997 | 9050 | 0.0 | - |
29.2605 | 9100 | 0.0 | - |
29.4212 | 9150 | 0.0 | - |
29.5820 | 9200 | 0.0 | - |
29.7428 | 9250 | 0.0 | - |
29.9035 | 9300 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.