SetFit with mini1013/master_domain
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: mini1013/master_domain
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 13 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
1.0 |
|
7.0 |
|
4.0 |
|
5.0 |
|
2.0 |
|
12.0 |
|
0.0 |
|
9.0 |
|
8.0 |
|
3.0 |
|
11.0 |
|
6.0 |
|
10.0 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.7552 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt6_test")
# Run inference
preds = model("에뛰드 컬픽스 마스카라 8g 그레이 브라운 버프샵")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 4 | 9.3296 | 20 |
Label | Training Sample Count |
---|---|
0.0 | 16 |
1.0 | 18 |
2.0 | 19 |
3.0 | 24 |
4.0 | 19 |
5.0 | 20 |
6.0 | 21 |
7.0 | 15 |
8.0 | 21 |
9.0 | 22 |
10.0 | 31 |
11.0 | 22 |
12.0 | 19 |
Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (50, 50)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 60
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0312 | 1 | 0.4833 | - |
1.5625 | 50 | 0.3686 | - |
3.125 | 100 | 0.0991 | - |
4.6875 | 150 | 0.0361 | - |
6.25 | 200 | 0.0224 | - |
7.8125 | 250 | 0.0132 | - |
9.375 | 300 | 0.0102 | - |
10.9375 | 350 | 0.0069 | - |
12.5 | 400 | 0.0012 | - |
14.0625 | 450 | 0.0002 | - |
15.625 | 500 | 0.0002 | - |
17.1875 | 550 | 0.0002 | - |
18.75 | 600 | 0.0001 | - |
20.3125 | 650 | 0.0001 | - |
21.875 | 700 | 0.0001 | - |
23.4375 | 750 | 0.0001 | - |
25.0 | 800 | 0.0001 | - |
26.5625 | 850 | 0.0001 | - |
28.125 | 900 | 0.0001 | - |
29.6875 | 950 | 0.0001 | - |
31.25 | 1000 | 0.0001 | - |
32.8125 | 1050 | 0.0001 | - |
34.375 | 1100 | 0.0001 | - |
35.9375 | 1150 | 0.0001 | - |
37.5 | 1200 | 0.0001 | - |
39.0625 | 1250 | 0.0001 | - |
40.625 | 1300 | 0.0001 | - |
42.1875 | 1350 | 0.0001 | - |
43.75 | 1400 | 0.0001 | - |
45.3125 | 1450 | 0.0001 | - |
46.875 | 1500 | 0.0001 | - |
48.4375 | 1550 | 0.0001 | - |
50.0 | 1600 | 0.0001 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.